A generative foundation model for an all-in-one seismic processing framework
- URL: http://arxiv.org/abs/2502.01111v1
- Date: Mon, 03 Feb 2025 07:01:36 GMT
- Title: A generative foundation model for an all-in-one seismic processing framework
- Authors: Shijun Cheng, Randy Harsuko, Tariq Alkhalifah,
- Abstract summary: generative seismic foundation model (GSFM) is a unified framework based on generative diffusion models (GDMs)
By adopting a target-oriented diffusion process prediction, GSFM improves computational efficiency without compromising accuracy.
- Score: 2.499907423888049
- License:
- Abstract: Seismic data often face challenges in their utilization due to noise contamination, incomplete acquisition, and limited low-frequency information, which hinder accurate subsurface imaging and interpretation. Traditional processing methods rely heavily on task-specific designs to address these challenges and fail to account for the variability of data. To address these limitations, we present a generative seismic foundation model (GSFM), a unified framework based on generative diffusion models (GDMs), designed to tackle multi-task seismic processing challenges, including denoising, backscattered noise attenuation, interpolation, and low-frequency extrapolation. GSFM leverages a pre-training stage on synthetic data to capture the features of clean, complete, and broadband seismic data distributions and applies an iterative fine-tuning strategy to adapt the model to field data. By adopting a target-oriented diffusion process prediction, GSFM improves computational efficiency without compromising accuracy. Synthetic data tests demonstrate GSFM surpasses benchmarks with equivalent architectures in all tasks and achieves performance comparable to traditional pre-training strategies, even after their fine-tuning. Also, field data tests suggest that our iterative fine-tuning approach addresses the generalization limitations of conventional pre-training and fine-tuning paradigms, delivering significantly enhanced performance across diverse tasks. Furthermore, GSFM's inherent probabilistic nature enables effective uncertainty quantification, offering valuable insights into the reliability of processing results.
Related papers
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
This paper develops an algorithm, PISA, which enables scalable parallel computing and supports various second-moment schemes.
Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz of the gradient.
Comprehensive experimental evaluations for or fine-tuning diverse FMs, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate its superior numerical performance compared to various state-of-the-art Directions.
arXiv Detail & Related papers (2025-02-15T12:28:51Z) - RobustFT: Robust Supervised Fine-tuning for Large Language Models under Noisy Response [23.45168175163634]
Supervised fine-tuning (SFT) plays a crucial role in adapting large language models (LLMs) to specific domains or tasks.
We introduce a robust SFT framework (RobustFT) that performs noise detection and relabeling on downstream task data.
Extensive experiments conducted on multiple LLMs across five datasets demonstrate RobustFT's exceptional performance in noisy scenarios.
arXiv Detail & Related papers (2024-12-19T15:00:18Z) - Generalized Diffusion Model with Adjusted Offset Noise [1.7767466724342067]
We propose a generalized diffusion model that naturally incorporates additional noise within a rigorous probabilistic framework.
We derive a loss function based on the evidence lower bound, establishing its theoretical equivalence to offset noise with certain adjustments.
Experiments on synthetic datasets demonstrate that our model effectively addresses brightness-related challenges and outperforms conventional methods in high-dimensional scenarios.
arXiv Detail & Related papers (2024-12-04T08:57:03Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
This paper presents an optimal strategy for streaming contexts with limited labeled data, introducing an adaptive technique for unsupervised regression.
The proposed method leverages a sparse set of initial labels and introduces an innovative drift detection mechanism.
To enhance adaptability, we integrate the ADWIN (ADaptive WINdowing) algorithm with error generalization based on Root Mean Square Error (RMSE)
arXiv Detail & Related papers (2023-12-12T19:23:54Z) - FaultSeg Swin-UNETR: Transformer-Based Self-Supervised Pretraining Model
for Fault Recognition [13.339333273943842]
This paper introduces an approach to enhance seismic fault recognition through self-supervised pretraining.
We have employed the Swin Transformer model as the core network and employed the SimMIM pretraining task to capture unique features related to discontinuities in seismic data.
Experimental results demonstrate that our proposed method attains state-of-the-art performance on the Thebe dataset, as measured by the OIS and ODS metrics.
arXiv Detail & Related papers (2023-10-27T08:38:59Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.