Scalable, nanoscale positioning of highly coherent color centers in prefabricated diamond nanostructures
- URL: http://arxiv.org/abs/2502.01198v1
- Date: Mon, 03 Feb 2025 09:45:13 GMT
- Title: Scalable, nanoscale positioning of highly coherent color centers in prefabricated diamond nanostructures
- Authors: Sunghoon Kim, Paz London, Daipeng Yang, Lillian Hughes, Jeffrey Ahlers, Simon Meynell, William Mitchell, Kunal Mukherjee, Ania C. Bleszynski Jayich,
- Abstract summary: We create highly coherent diamond nitrogen-vacancy (NV) centers with nanoscale three-dimensional localization in prefabricated nanostructures with high yield.
Our high-yield defect creation method will enable scalable production of solid-state defect sensors and processors.
- Score: 0.6984041732849825
- License:
- Abstract: Nanophotonic devices in color center-containing hosts provide efficient readout, control, and entanglement of the embedded emitters. Yet control over color center formation - in number, position, and coherence - in nanophotonic devices remains a challenge to scalability. Here, we report a controlled creation of highly coherent diamond nitrogen-vacancy (NV) centers with nanoscale three-dimensional localization in prefabricated nanostructures with high yield. Combining nitrogen $\delta$-doping during chemical vapor deposition diamond growth and localized electron irradiation, we form shallow NVs registered to the center of diamond nanopillars with wide tunability over NV number. We report positioning precision of ~ 4 nm in depth and 46(1) nm laterally in pillars (102(2) nm in bulk diamond). We reliably form single NV centers with long spin coherence times (average $T_2^{Hahn}$ = 98 $\mu s$) and 1.8x higher average photoluminescence compared to NV centers randomly positioned in pillars. We achieve a 3x improved yield of NV centers with single electron-spin sensitivity over conventional implantation-based methods. Our high-yield defect creation method will enable scalable production of solid-state defect sensors and processors.
Related papers
- Optically Coherent Nitrogen-Vacancy Centers in HPHT Treated Diamonds [6.576597801995822]
nitrogen-vacancy (NV) center in diamond has attracted much attention in the fields of quantum sensing, quantum simulation, and quantum networks.
In this work, we demonstrate a non-destructive method to fabricate optically coherent NV centers.
arXiv Detail & Related papers (2024-09-26T00:29:34Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Optical and spin properties of nitrogen vacancy centers formed along the
tracks of high energy heavy ions [2.8825337053731186]
Quasi 1D chains of coupled NV centers with lengths of a few tens of microns can be building blocks for quantum information processing.
We report on color center formation in diamond (1 ppm nitrogen) with 1 GeV gold and uranium ions.
arXiv Detail & Related papers (2024-03-06T09:29:56Z) - Hot ion implantation to create dense NV centre ensembles in diamond [31.114245664719455]
In this work, we realize N2 ion implantation in the 30 to 40 keV range at high temperatures.
At 800 C, NV ensemble photoluminescence emission is three to four times higher than room temperature implanted films.
arXiv Detail & Related papers (2023-11-09T12:47:41Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - Tunable and Transferable Diamond Membranes for Integrated Quantum
Technologies [48.634695885442504]
nanoscale-thick uniform diamond membranes are synthesized via "smart-cut" and isotopically (12C) purified overgrowth.
Within 110 nm thick membranes, individual germanium-vacancy (GeV-) centers exhibit stable photoluminescence at 5.4 K and average optical transition linewidths as low as 125 MHz.
This platform enables the straightforward integration of diamond membranes that host coherent color centers into quantum technologies.
arXiv Detail & Related papers (2021-09-23T17:18:39Z) - Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically
on Chip-Compatible Substrates [51.112488102081734]
Two-dimensional hexagonal boron nitride (hBN) hosts bright room-temperature single-photon emitters (SPEs)
Here, we report a radiation- and lithography-free route to deterministically activate hBN SPEs by nanoindentation with an atomic force microscope (AFM) tip.
arXiv Detail & Related papers (2021-06-28T20:58:02Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Adjoint-optimized nanoscale light extractor for nitrogen-vacancy centers
in diamond [0.0]
nanoscale light extractor (NLE) for efficient outcoupling and beaming of broadband light emitted by shallow, negatively charged nitrogen-vacancy centers in bulk diamond.
NLE consists of a patterned silicon layer on diamond and requires no etching of the diamond surface.
arXiv Detail & Related papers (2020-07-09T04:04:49Z) - Charge State Dynamics and Optically Detected Electron Spin Resonance
Contrast of Shallow Nitrogen-Vacancy Centers in Diamond [2.2720742607784183]
Nitrogen-vacancy centers in diamond can be used for nanoscale sensing with atomic resolution and sensitivity.
In addition to degraded spin coherence, NV centers within nanometers of the surface can also exhibit decreased fluorescence contrast for optically detected electron spin resonance.
arXiv Detail & Related papers (2020-05-03T17:04:48Z) - High-Q Nanophotonic Resonators on Diamond Membranes using Templated
Atomic Layer Deposition of TiO2 [48.7576911714538]
Integrating quantum emitters with nanophotonic resonators is essential for efficient spin-photon interfacing and optical networking applications.
Here, we develop an integrated photonics platform based on templated atomic layer deposition of TiO2 on diamond membranes.
Our fabrication method yields high-performance nanophotonic devices while avoiding etching wavelength-scale features into diamond.
arXiv Detail & Related papers (2020-04-07T16:43:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.