Creation of Negatively Charged GeV and SnV centers in Nanodiamonds via Ion Implantation
- URL: http://arxiv.org/abs/2503.19490v2
- Date: Wed, 09 Apr 2025 09:05:34 GMT
- Title: Creation of Negatively Charged GeV and SnV centers in Nanodiamonds via Ion Implantation
- Authors: Selene Sachero, Richard Waltrich, Emilio Corte, Sviatoslav Ditalia Tchernij, Alexander Kubanek,
- Abstract summary: Solid state quantum emitters, in particular group-IV vacancy centers in diamond, are at the forefront of research in quantum technologies.<n>We present the fabrication of germanium- and tin- vacancy centers by means of ion implantation.<n>We achieve high purity single photon emission via resonant excitation and strong coherent drive of a SnV$-$ center.
- Score: 39.93659648269682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solid state quantum emitters, in particular group-IV vacancy centers in diamond, are at the forefront of research in quantum technologies due to their unique optical and spin properties. Reduction of the diamond host size to the nanoscale enables new opportunities in terms of integration and scalability. However, creating optically coherent quantum emitters in nanodiamonds remains a major challenge. Here, we present the fabrication of germanium- and tin- vacancy centers by means of ion implantation. We describe the fabrication process and present the optical properties of the created color centers. We achieve high purity single photon emission via resonant excitation and strong coherent drive of a SnV$^-$ center. The successful integration of heavier group-IV vacancy centers in nanodiamonds paves the way for further advances in fields like hybrid quantum photonics or sensing on the nanoscale.
Related papers
- Optically Coherent Nitrogen-Vacancy Centers in HPHT Treated Diamonds [6.576597801995822]
nitrogen-vacancy (NV) center in diamond has attracted much attention in the fields of quantum sensing, quantum simulation, and quantum networks.
In this work, we demonstrate a non-destructive method to fabricate optically coherent NV centers.
arXiv Detail & Related papers (2024-09-26T00:29:34Z) - Purcell enhancement and spin spectroscopy of silicon vacancy centers in silicon carbide using an ultra-small mode-volume plasmonic cavity [0.0]
We report the integration of V$_Si$ centers with a plasmonic nanocavity to enhance the emission.
The results highlight the potential of nanophotonic structures for advancing quantum networking technologies.
arXiv Detail & Related papers (2024-07-08T13:51:10Z) - Quantum Photonic Circuits Integrated with Color Centers in Designer
Nanodiamonds [5.716614457230607]
We present a new technique that enables deterministic assembly of diamond color centers in a silicon nitride photonic circuit.
Our hybrid integration approach has the potential for achieving the maximum possible light-matter interaction strength.
arXiv Detail & Related papers (2023-07-25T07:57:14Z) - Enhanced Spectral Density of a Single Germanium Vacancy Center in a
Nanodiamond by Cavity-Integration [35.759786254573896]
Color centers in diamond, among them the negatively-charged germanium vacancy (GeV$-$), are promising candidates for many applications of quantum optics.
We demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P'erot microcavity.
arXiv Detail & Related papers (2023-07-03T10:33:06Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Hybrid Quantum Nanophotonics: Interfacing Color Center in Nanodiamonds
with Si3N4-Photonics [55.41644538483948]
This chapter covers recent developments in the field of hybrid quantum photonics based on color centers in nanodiamonds and Si3N4-photonics.
We believe, that the hybrid approach provides a promising path to realize quantum photonic applications, such as quantum networks or quantum repeaters, in the near future.
arXiv Detail & Related papers (2022-07-26T08:59:48Z) - Nanofabricated and integrated colour centres in silicon carbide with
high-coherence spin-optical properties [1.3246119976070139]
We demonstrate nanoscale fabrication of silicon vacancy centres (VSi) in 4H-SiC without deterioration of their intrinsic spin-optical properties.
We show nearly transform limited photon emission and record spin coherence times for single defects generated via ion implantation and in triangular cross section waveguides.
For the latter, we show further controlled operations on nearby nuclear spin qubits, which is crucial for fault-tolerant quantum information distribution.
arXiv Detail & Related papers (2021-09-10T08:42:14Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - High-Q Nanophotonic Resonators on Diamond Membranes using Templated
Atomic Layer Deposition of TiO2 [48.7576911714538]
Integrating quantum emitters with nanophotonic resonators is essential for efficient spin-photon interfacing and optical networking applications.
Here, we develop an integrated photonics platform based on templated atomic layer deposition of TiO2 on diamond membranes.
Our fabrication method yields high-performance nanophotonic devices while avoiding etching wavelength-scale features into diamond.
arXiv Detail & Related papers (2020-04-07T16:43:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.