論文の概要: Theoretical Analysis of KL-regularized RLHF with Multiple Reference Models
- arxiv url: http://arxiv.org/abs/2502.01203v1
- Date: Mon, 03 Feb 2025 09:50:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:04:01.296251
- Title: Theoretical Analysis of KL-regularized RLHF with Multiple Reference Models
- Title(参考訳): 複数の参照モデルを用いたKL規則化RLHFの理論解析
- Authors: Gholamali Aminian, Amir R. Asadi, Idan Shenfeld, Youssef Mroueh,
- Abstract要約: 厳密な統計分析を含む包括的理論的枠組みを導入し,複雑さの保証を提供する。
我々は分析を拡張し、KL規則化されたRLHFを前進させ、サンプルの複雑性要求に対する新たな洞察を提供する。
- 参考スコア(独自算出の注目度): 17.8627908893654
- License:
- Abstract: Recent methods for aligning large language models (LLMs) with human feedback predominantly rely on a single reference model, which limits diversity, model overfitting, and underutilizes the wide range of available pre-trained models. Incorporating multiple reference models has the potential to address these limitations by broadening perspectives, reducing bias, and leveraging the strengths of diverse open-source LLMs. However, integrating multiple reference models into reinforcement learning with human feedback (RLHF) frameworks poses significant theoretical challenges, particularly in reverse KL-regularization, where achieving exact solutions has remained an open problem. This paper presents the first \emph{exact solution} to the multiple reference model problem in reverse KL-regularized RLHF. We introduce a comprehensive theoretical framework that includes rigorous statistical analysis and provides sample complexity guarantees. Additionally, we extend our analysis to forward KL-regularized RLHF, offering new insights into sample complexity requirements in multiple reference scenarios. Our contributions lay the foundation for more advanced and adaptable LLM alignment techniques, enabling the effective use of multiple reference models. This work paves the way for developing alignment frameworks that are both theoretically sound and better suited to the challenges of modern AI ecosystems.
- Abstract(参考訳): 大規模言語モデル(LLM)を人間のフィードバックと整合させる最近の手法は、多様性を制限する単一の参照モデルに大きく依存している。
複数の参照モデルを組み込むことで、視点を広げ、バイアスを減らし、様々なオープンソースLLMの強みを活用することで、これらの制限に対処できる可能性がある。
しかし、複数の参照モデルを強化学習と人間フィードバック(RLHF)フレームワークに統合することは、特に逆KL正規化において重要な理論的課題を生んでいる。
本稿では、逆KL正規化RLHFにおける多重参照モデル問題に対して、最初の \emph{exact solution} を提案する。
厳密な統計分析を含む包括的理論的枠組みを導入し,複雑さの保証を提供する。
さらに、我々は分析を拡張してKL規則化されたRLHFを前進させ、複数の参照シナリオにおけるサンプル複雑性要求に対する新たな洞察を提供する。
我々の貢献により、より高度で適応可能なLLMアライメント技術の基礎が築かれ、複数の参照モデルが効果的に利用できるようになりました。
この研究は、理論的に健全で、現代のAIエコシステムの課題により適したアライメントフレームワークを開発するための道を開いた。
関連論文リスト
- Investigating the Impact of Model Complexity in Large Language Models [3.7919508292745676]
事前訓練された微調整パラダイムに基づく大規模言語モデル(LLM)は、自然言語処理タスクの解決において重要な役割を担っている。
本稿では,自己回帰 LLM に着目し,HMM (Hidden Markov Models) を用いたモデリングを提案する。
論文 参考訳(メタデータ) (2024-10-01T13:53:44Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - On the Generalization of Preference Learning with DPO [17.420727709895736]
大きな言語モデル(LLM)は目覚ましい能力を示してきたが、しばしば人間の好みに合わせるのに苦労している。
嗜好学習は、人間のフィードバックに基づいて、好ましくない反応と好ましくない反応を区別するモデルを訓練する。
本稿では、直接選好最適化(DPO)で訓練されたモデルの一般化保証を解析するための新しい理論的枠組みを提案する。
論文 参考訳(メタデータ) (2024-08-06T22:11:00Z) - LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations [51.76373105981212]
リグレードはレコメンデーションシステムにおいて重要な要素であり、レコメンデーションアルゴリズムの出力を精査する上で重要な役割を果たす。
そこで我々は,様々な格付け基準をシームレスに統合する包括的格付けフレームワークを提案する。
カスタマイズ可能な入力機構も統合されており、言語モデルのフォーカスを特定の再配置のニーズに合わせることができる。
論文 参考訳(メタデータ) (2024-06-18T09:29:18Z) - Improving Generalization of Neural Vehicle Routing Problem Solvers Through the Lens of Model Architecture [9.244633039170186]
本稿では,ESF(Scaling Factor)とDS(Distributed-Specific)デコーダを提案する。
ESFは、様々な大きさのVRPを解く際に、トレーニング中に発見された慣れ親しんだものに対して、モデルの注意重みパターンを調整する。
DSデコーダは、複数の補助光デコーダを通して複数のトレーニング分布パターンのVRPを明示的にモデル化し、モデル表現空間を拡大する。
論文 参考訳(メタデータ) (2024-06-10T09:03:17Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Rewards-in-Context: Multi-objective Alignment of Foundation Models with Dynamic Preference Adjustment [46.44464839353993]
リワード・イン・コンテキスト(Rewards-in-Context, RiC)を導入する。
RiCは単一のファンデーションモデルの教師付き微調整のみを必要とし、推論時間中にユーザの好みを動的に調整する。
論文 参考訳(メタデータ) (2024-02-15T18:58:31Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
NLPシステムの予測に関する因果的説明は、安全性を確保し、信頼を確立するために不可欠である。
既存の手法は、しばしばモデル予測を効果的または効率的に説明できない。
本稿では, 対物近似(CF)の2つの手法を提案する。
論文 参考訳(メタデータ) (2023-10-01T07:31:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。