Land Surface Temperature Super-Resolution with a Scale-Invariance-Free Neural Approach: Application to MODIS
- URL: http://arxiv.org/abs/2502.01204v1
- Date: Mon, 03 Feb 2025 09:52:19 GMT
- Title: Land Surface Temperature Super-Resolution with a Scale-Invariance-Free Neural Approach: Application to MODIS
- Authors: Romuald Ait-Bachir, Carlos Granero-Belinchon, Aurélie Michel, Julien Michel, Xavier Briottet, Lucas Drumetz,
- Abstract summary: Super-resolution methods have been developed to provide fine-scale Land SurfaceTemperature (LST) maps.
Most of them are trained at low resolution but applied at fine resolution, and so they require a scale-invariance hypothesis that is not always adapted.
- Score: 3.210635327851811
- License:
- Abstract: Due to the trade-off between the temporal and spatial resolution of thermal spaceborne sensors, super-resolution methods have been developed to provide fine-scale Land SurfaceTemperature (LST) maps. Most of them are trained at low resolution but applied at fine resolution, and so they require a scale-invariance hypothesis that is not always adapted. Themain contribution of this work is the introduction of a Scale-Invariance-Free approach for training Neural Network (NN) models, and the implementation of two NN models, calledScale-Invariance-Free Convolutional Neural Network for Super-Resolution (SIF-CNN-SR) for the super-resolution of MODIS LST products. The Scale-Invariance-Free approach consists ontraining the models in order to provide LST maps at high spatial resolution that recover the initial LST when they are degraded at low resolution and that contain fine-scale texturesinformed by the high resolution NDVI. The second contribution of this work is the release of a test database with ASTER LST images concomitant with MODIS ones that can be usedfor evaluation of super-resolution algorithms. We compare the two proposed models, SIF-CNN-SR1 and SIF-CNN-SR2, with four state-of-the-art methods, Bicubic, DMS, ATPRK, Tsharp,and a CNN sharing the same architecture as SIF-CNN-SR but trained under the scale-invariance hypothesis. We show that SIF-CNN-SR1 outperforms the state-of-the-art methods and the other two CNN models as evaluated with LPIPS and Fourier space metrics focusing on the analysis of textures. These results and the available ASTER-MODIS database for evaluation are promising for future studies on super-resolution of LST.
Related papers
- A Flow-based Truncated Denoising Diffusion Model for Super-resolution Magnetic Resonance Spectroscopic Imaging [34.32290273033808]
This work introduces a Flow-based Truncated Denoising Diffusion Model for super-resolution MRSI.
It shortens the diffusion process by truncating the diffusion chain, and the truncated steps are estimated using a normalizing flow-based network.
We demonstrate that FTDDM outperforms existing generative models while speeding up the sampling process by over 9-fold.
arXiv Detail & Related papers (2024-10-25T03:42:35Z) - Advancing Super-Resolution in Neural Radiance Fields via Variational Diffusion Strategies [2.4849437811455797]
We present a novel method for diffusion-guided frameworks for view-consistent super-resolution (SR) in neural rendering.
Our approach leverages existing 2D SR models in conjunction with advanced techniques such as Variational Score Distilling (VSD) and a LoRA fine-tuning helper.
arXiv Detail & Related papers (2024-10-22T00:02:26Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors.
We introduce a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods.
Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR.
arXiv Detail & Related papers (2024-09-25T16:15:21Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
Most fusion methods solely focus on the fusion algorithm itself and overlook the degradation models.
We propose physics-inspired degradation models (PIDM) to model the degradation of LR-HSI and HR-MSI.
Our proposed PIDM can boost the fusion performance of existing fusion methods in practical scenarios.
arXiv Detail & Related papers (2024-02-04T09:07:28Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
Image super-resolution (SR) aims to learn a mapping from low-resolution (LR) to high-resolution (HR) using paired HR-LR training images.
We present an efficient test-time adaptation framework for SR, named SRTTA, which is able to quickly adapt SR models to test domains with different/unknown degradation types.
arXiv Detail & Related papers (2023-10-29T13:58:57Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - A Latent Encoder Coupled Generative Adversarial Network (LE-GAN) for
Efficient Hyperspectral Image Super-resolution [3.1023808510465627]
generative adversarial network (GAN) has proven to be an effective deep learning framework for image super-resolution.
To alleviate the problem of mode collapse, this work has proposed a novel GAN model coupled with a latent encoder (LE-GAN)
LE-GAN can map the generated spectral-spatial features from the image space to the latent space and produce a coupling component to regularise the generated samples.
arXiv Detail & Related papers (2021-11-16T18:40:19Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
We present and advocate an explainable approach toward SISR named model-guided deep unfolding network (MoG-DUN)
MoG-DUN is accurate (producing fewer aliasing artifacts), computationally efficient (with reduced model parameters), and versatile (capable of handling multiple degradations)
The superiority of the proposed MoG-DUN method to existing state-of-theart image methods including RCAN, SRDNF, and SRFBN is substantiated by extensive experiments on several popular datasets and various degradation scenarios.
arXiv Detail & Related papers (2020-09-14T08:23:37Z) - Coupled Convolutional Neural Network with Adaptive Response Function
Learning for Unsupervised Hyperspectral Super-Resolution [28.798775822331045]
Hyperspectral super-resolution refers to fusing HSI and MSI to generate an image with both high spatial and high spectral resolutions.
In this work, an unsupervised deep learning-based fusion method - HyCoNet - that can solve the problems in HSI-MSI fusion without the prior PSF and SRF information is proposed.
arXiv Detail & Related papers (2020-07-28T06:17:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.