論文の概要: The Differences Between Direct Alignment Algorithms are a Blur
- arxiv url: http://arxiv.org/abs/2502.01237v2
- Date: Mon, 19 May 2025 18:58:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:51.751216
- Title: The Differences Between Direct Alignment Algorithms are a Blur
- Title(参考訳): 直列アライメントアルゴリズムの違いはBlurである
- Authors: Alexey Gorbatovski, Boris Shaposhnikov, Viacheslav Sinii, Alexey Malakhov, Daniil Gavrilov,
- Abstract要約: 1段階法(ORPO, ASFT)は2段階法に比べて性能が低いことを示す。
明示的なSFTフェーズで2段階のセットアップに適応させることで性能が向上することを示す。
総合的な分析により、ペアワイドとポイントワイドの目的の選択がアライメントの成功の主要な決定要因であることが判明した。
- 参考スコア(独自算出の注目度): 3.0059120458540383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Direct Alignment Algorithms (DAAs) offer a simpler way to language model alignment than traditional RLHF by directly optimizing policies. While DAAs differ in their use of SFT (one-stage vs. two-stage), the scalar scores within their objectives (likelihood vs. odds ratios), and ranking objectives (pairwise vs. pointwise), the critical factors for performance remain underexplored. We provide a systematic comparative analysis. We first show that one-stage methods (e.g. ORPO, ASFT) underperform compared to two-stage approaches. However, we demonstrate that adapting them to a two-stage setup with an explicit SFT phase can improve their performance. Further, introducing and tuning a unifying $\beta$ parameter within this two-stage framework boosts their performence (e.g., AlpacaEval 2: $+13.45$ ORPO, $+8.27$ ASFT), matching established methods like DPO and enabling fair comparisons. Our comprehensive analysis reveals that the choice between pairwise and pointwise objectives is the primary determinant of alignment success, rather than the specific scalar score (e.g., policy-reference ratio vs. odds ratio) employed. We provide empirical evidence suggesting this stems from how these objectives interact with prompt-specific biases. These findings underscore the need for nuanced evaluations in DAA research to avoid oversimplified claims of superiority.
- Abstract(参考訳): 直接アライメントアルゴリズム(DAA)は、ポリシーを直接最適化することで、従来のRLHFよりも言語モデルのアライメントをより簡単な方法を提供する。
DAAは、SFT(ワンステージ対2ステージ)、スカラースコア(リフッド対オッズ比)、ランキング目標(ペアワイド対ポイントワイド)で異なるが、パフォーマンスの重要な要因はいまだ過小評価されている。
体系的な比較分析を提供する。
まず,一段階法(例えばORPO,ASFT)は二段階法に比べて性能が低いことを示す。
しかし,SFTフェーズの明示的な2段階設定に適応させることで,性能が向上することが実証された。
さらに、この2段階フレームワーク内での統一された$\beta$パラメータの導入とチューニングにより、パフォーマンス(例えば、AlpacaEval 2: $+13.45$ ORPO, $+8.27$ ASFT)が向上し、DPOのような確立したメソッドと一致し、公正な比較を可能にする。
総括分析の結果, 対の目的と点の目的の選択が, 特定のスカラースコア(例えば, 政策基準比とオッズ比)よりもアライメント成功の主要因であることが判明した。
これは、これらの目的が即時特異的バイアスとどのように相互作用するかに起因していることを示す実証的な証拠を提供する。
これらの知見は、過度に単純化された優越性の主張を避けるために、DAA研究におけるニュアンス評価の必要性を浮き彫りにした。
関連論文リスト
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
平均逆無限水平POMDPを未知の遷移モデルで扱う。
この障壁を克服する斬新でシンプルな推定器を提示する。
論文 参考訳(メタデータ) (2025-01-30T22:29:41Z) - $f$-PO: Generalizing Preference Optimization with $f$-divergence Minimization [54.94545757220999]
$f$-POは、既存のアプローチを一般化し拡張する新しいフレームワークである。
ベンチマークデータセットを用いて最先端言語モデルの実験を行う。
論文 参考訳(メタデータ) (2024-10-29T02:11:45Z) - $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPOは、大規模言語モデルの適応的優先最適化アルゴリズムである。
ポリシーモデルと参照モデルのバランスを取り、パーソナライズされた報酬マージンを達成する。
さまざまなモデル設定でDPOとSimPOを一貫して上回ります。
論文 参考訳(メタデータ) (2024-10-14T04:29:57Z) - SeRA: Self-Reviewing and Alignment of Large Language Models using Implicit Reward Margins [30.767203592231496]
SeRA(Self-Reviewing and Alignment)は、既存のDAAと簡単に組み合わせられる費用効率が高く効果的な手法である。
SeRAは,(1)暗黙の報酬マージンを用いたサンプル選択,(2)暗黙の報酬を用いた選好ブートストラッピング,の2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-10-12T04:17:28Z) - Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization [78.82586283794886]
新たなオフラインアライメントアルゴリズムである$chi2$-Preference Optimization(chi$PO)を提案する。
$chi$POは、正規化による不確実性に直面して悲観主義の原理を実装している。
過度な最適化には確実に堅牢であり、単一政治の集中性に基づいたサンプル複雑度保証を実現する。
論文 参考訳(メタデータ) (2024-07-18T11:08:40Z) - A Finite-Sample Analysis of an Actor-Critic Algorithm for Mean-Variance Optimization in a Discounted MDP [1.0923877073891446]
政策評価のために線形関数近似(LFA)を用いた時間差分学習アルゴリズムを解析する。
我々は、(i) を平均二乗の意味で保持し、(ii) を尾の反復平均化の下で高い確率で導く有限サンプル境界を導出する。
これらの結果は、強化学習におけるリスクに敏感なアクター批判法に対する有限サンプル理論的保証を確立する。
論文 参考訳(メタデータ) (2024-06-12T05:49:53Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - $i$REPO: $i$mplicit Reward Pairwise Difference based Empirical Preference Optimization [12.266207199002604]
大規模言語モデル(LLM)は、人間の期待から外れた出力を生成することがある。
経験的選好最適化に暗黙的逆差分回帰を利用する,$i$REPO という新しいフレームワークを提案する。
i$REPOは, ソフトラベル, 自己生成応答, 経験的AIアノテータのロジットを用いて, 効果的に自己アライメントを実現することを示す。
論文 参考訳(メタデータ) (2024-05-24T05:42:11Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
政策勾配法(PG法)はISの利点を大いに生かし、以前に収集したサンプルを効果的に再利用することができる。
しかし、ISは歴史的サンプルを再重み付けするための受動的ツールとしてRLに採用されている。
我々は、政策勾配のばらつきを減らすために、サンプルを収集する最良の行動ポリシーを模索する。
論文 参考訳(メタデータ) (2024-05-09T09:08:09Z) - Stability-penalty-adaptive follow-the-regularized-leader: Sparsity,
game-dependency, and best-of-both-worlds [46.30750729936261]
FTRL(Follow-the-regularized-leader)は近年,バンドイット問題における適応性獲得の最も有望なアプローチの1つである。
我々は3種類の適応性を持ついくつかのアルゴリズムを確立する:空間性、ゲーム依存性、およびベスト・オブ・ボス・ワールド(BOBW)である。
論文 参考訳(メタデータ) (2023-05-26T23:20:48Z) - ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning [91.13797346047984]
本稿では,2次最適化アルゴリズムであるADAHESSIANを紹介する。
ADAHESSIANは、他の適応最適化手法と比較して、新しい最先端の成果を大きなマージンで達成することを示す。
論文 参考訳(メタデータ) (2020-06-01T05:00:51Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
本稿では,最適化アルゴリズム(OPPO)の最適変種を提案する。
OPPO は $tildeO(sqrtd2 H3 T )$ regret を達成する。
我々の知る限りでは、OPPOは、探索する最初の証明可能な効率的なポリシー最適化アルゴリズムである。
論文 参考訳(メタデータ) (2019-12-12T08:40:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。