論文の概要: Main Predicate and Their Arguments as Explanation Signals For Intent Classification
- arxiv url: http://arxiv.org/abs/2502.01270v1
- Date: Mon, 03 Feb 2025 11:39:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:00:20.461042
- Title: Main Predicate and Their Arguments as Explanation Signals For Intent Classification
- Title(参考訳): インテント分類のための説明信号としての主述語とその論拠
- Authors: Sameer Pimparkhede, Pushpak Bhattacharyya,
- Abstract要約: 主動詞は行動を表し,直接目的語は会話の領域を示し,目的語の説明信号として機能することを示す。
我々は、主述語(主に動詞)とその引数を、ベンチマーク意図分類データセットATISおよびSNIPSにおける説明信号としてマークする。
分類のためにうまく機能するモデルは、妥当性や忠実さといった説明可能性の指標ではうまく機能しない。
- 参考スコア(独自算出の注目度): 41.09752906121257
- License:
- Abstract: Intent classification is crucial for conversational agents (chatbots), and deep learning models perform well in this area. However, little research has been done on the explainability of intent classification due to the absence of suitable benchmark data. Human annotation of explanation signals in text samples is time-consuming and costly. However, from inspection of data on intent classification, we see that, more often than not, the main verb denotes the action, and the direct object indicates the domain of conversation, serving as explanation signals for intent. This observation enables us to hypothesize that the main predicate in the text utterances, along with the arguments of the main predicate, can serve as explanation signals. Leveraging this, we introduce a new technique to automatically augment text samples from intent classification datasets with word-level explanations. We mark main predicates (primarily verbs) and their arguments (dependency relations) as explanation signals in benchmark intent classification datasets ATIS and SNIPS, creating a unique 21k-instance dataset for explainability. Further, we experiment with deep learning and language models. We observe that models that work well for classification do not perform well in explainability metrics like plausibility and faithfulness. We also observe that guiding models to focus on explanation signals from our dataset during training improves the plausibility Token F1 score by 3-4%, improving the model's reasoning.
- Abstract(参考訳): インテント分類は会話エージェント(チャットボット)にとって不可欠であり、深層学習モデルはこの分野でよく機能する。
しかし、適切なベンチマークデータがないため、意図分類の可能性についてはほとんど研究されていない。
テキストサンプルにおける説明信号の人的アノテーションは、時間と費用がかかる。
しかし,意図分類データの検査から,主動詞は行動を表し,直接対象は会話の領域を示し,意図の説明信号として機能することがわかった。
この観察により,テキスト発話における主述語は主述語の主張とともに説明信号として機能する,という仮説を立てることができる。
これを利用して、単語レベルの説明を伴う意図分類データセットからテキストサンプルを自動的に拡張する新しい手法を導入する。
我々は、主述語(主に動詞)とその引数(依存性関係)を、ベンチマーク意図分類データセットATISおよびSNIPSにおける説明信号としてマークし、説明可能性のための21k-instanceデータセットを作成します。
さらに,深層学習と言語モデルを用いた実験を行った。
分類のためにうまく機能するモデルは、妥当性や忠実さといった説明可能性の指標ではうまく機能しない。
また、トレーニング中のデータセットからの説明信号にフォーカスするモデルを導くことで、可否F1スコアが3~4%向上し、モデルの推論が向上することが観察された。
関連論文リスト
- Zero-Shot Text Classification via Self-Supervised Tuning [46.9902502503747]
ゼロショットテキスト分類タスクを解決するための自己教師付き学習に基づく新しいパラダイムを提案する。
自己教師付きチューニングという,ラベルのないデータで言語モデルをチューニングする。
我々のモデルは10タスク中7タスクで最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2023-05-19T05:47:33Z) - What Are You Token About? Dense Retrieval as Distributions Over the
Vocabulary [68.77983831618685]
本稿では,2つのエンコーダが生成するベクトル表現を,モデルの語彙空間に投影することで解釈する。
得られたプロジェクションは、リッチな意味情報を含み、それらの間の接続を描画し、スパース検索を行う。
論文 参考訳(メタデータ) (2022-12-20T16:03:25Z) - Saliency Map Verbalization: Comparing Feature Importance Representations
from Model-free and Instruction-based Methods [6.018950511093273]
サージェンシマップは、重要な入力特徴を特定することによって、ニューラルネットワークの予測を説明することができる。
我々は,サリエンシマップを自然言語に翻訳する未調査課題を定式化する。
本研究では,従来の特徴強調表現と比較した2つの新手法(検索ベースおよび命令ベース言語化)を比較した。
論文 参考訳(メタデータ) (2022-10-13T17:48:15Z) - Perturbations and Subpopulations for Testing Robustness in Token-Based
Argument Unit Recognition [6.502694770864571]
Argument Unit Recognition and Classification は、テキストから引数単位を識別し、それをpro または against として分類することを目的としている。
このタスクのためにシステムを開発する際に必要となる設計上の選択の1つは、分類単位が何かである。
従来の研究では、トークンレベルの微調整言語モデルは、文章を直接訓練するよりも、文章を分類する上でより堅牢な結果をもたらすことが示唆されている。
当初この主張を導いた研究を再現し、トークンベースのシステムが文ベースのシステムと比較して何を学んだかをさらに調査する。
論文 参考訳(メタデータ) (2022-09-29T13:44:28Z) - The Unreliability of Explanations in Few-Shot In-Context Learning [50.77996380021221]
我々は、テキスト上の推論、すなわち質問応答と自然言語推論を含む2つのNLPタスクに焦点を当てる。
入力と論理的に整合した説明は、通常より正確な予測を示す。
本稿では,説明の信頼性に基づいてモデル予測を校正する枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-06T17:57:58Z) - Distant finetuning with discourse relations for stance classification [55.131676584455306]
そこで本研究では,定位分類のモデルとして,原文から銀ラベルでデータを抽出し,微調整する手法を提案する。
また,様々な段階において微調整に用いるデータのノイズレベルが減少する3段階のトレーニングフレームワークを提案する。
NLPCC 2021共有タスクArgumentative Text Understanding for AI Debaterでは,26の競合チームの中で1位にランクインした。
論文 参考訳(メタデータ) (2022-04-27T04:24:35Z) - Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
本稿では,Hintと呼ばれる階層型インタプリタ型ニューラルテキスト分類器を提案する。
レビューデータセットとニュースデータセットの両方の実験結果から,提案手法は既存の最先端テキスト分類器と同等のテキスト分類結果が得られることが示された。
論文 参考訳(メタデータ) (2022-02-20T11:15:03Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
本論文では, 遠隔ラベルデータから予測可能, 解釈可能, 堅牢な関係表現を学習することを目的とする。
文脈情報から各関係のプロトタイプを学習し,関係の本質的意味を最善に探求する。
いくつかの関係学習タスクの結果,本モデルが従来の関係モデルを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-22T08:11:43Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z) - Generating Hierarchical Explanations on Text Classification via Feature
Interaction Detection [21.02924712220406]
特徴的相互作用を検出することによって階層的な説明を構築する。
このような説明は、単語とフレーズが階層の異なるレベルでどのように結合されるかを視覚化する。
実験は、モデルに忠実であり、人間に解釈可能な説明を提供する上で、提案手法の有効性を示す。
論文 参考訳(メタデータ) (2020-04-04T20:56:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。