論文の概要: HyperSHAP: Shapley Values and Interactions for Hyperparameter Importance
- arxiv url: http://arxiv.org/abs/2502.01276v1
- Date: Mon, 03 Feb 2025 11:47:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:06:01.602595
- Title: HyperSHAP: Shapley Values and Interactions for Hyperparameter Importance
- Title(参考訳): HyperSHAP: ハイパーパラメータの重要度のための共有価値とインタラクション
- Authors: Marcel Wever, Maximilian Muschalik, Fabian Fumagalli, Marius Lindauer,
- Abstract要約: 本稿では,シャプリー値と相互作用に基づくHPOのゲーム理論的説明可能性フレームワークを提案する。
その結果,高次相互作用は存在するものの,低次表現に着目してほとんどの性能改善が説明できることがわかった。
- 参考スコア(独自算出の注目度): 14.971231302401558
- License:
- Abstract: Hyperparameter optimization (HPO) is a crucial step in achieving strong predictive performance. However, the impact of individual hyperparameters on model generalization is highly context-dependent, prohibiting a one-size-fits-all solution and requiring opaque automated machine learning (AutoML) systems to find optimal configurations. The black-box nature of most AutoML systems undermines user trust and discourages adoption. To address this, we propose a game-theoretic explainability framework for HPO that is based on Shapley values and interactions. Our approach provides an additive decomposition of a performance measure across hyperparameters, enabling local and global explanations of hyperparameter importance and interactions. The framework, named HyperSHAP, offers insights into ablations, the tunability of learning algorithms, and optimizer behavior across different hyperparameter spaces. We evaluate HyperSHAP on various HPO benchmarks by analyzing the interaction structure of the HPO problem. Our results show that while higher-order interactions exist, most performance improvements can be explained by focusing on lower-order representations.
- Abstract(参考訳): ハイパーパラメータ最適化(HPO)は、強力な予測性能を達成するための重要なステップである。
しかし、モデル一般化に対する個々のハイパーパラメータの影響は、コンテキスト依存性が高く、ワンサイズフィットのソリューションを禁止し、最適な構成を見つけるために不透明な自動機械学習(AutoML)システムを必要とする。
ほとんどのAutoMLシステムのブラックボックスの性質は、ユーザの信頼を損なうとともに、採用を妨げます。
そこで本研究では,Shapley値とインタラクションに基づくHPOのゲーム理論的説明可能性フレームワークを提案する。
提案手法は,ハイパーパラメータを横断する性能尺度を付加的に分解し,ハイパーパラメータの重要性と相互作用の局所的および大域的説明を可能にする。
HyperSHAPという名前のこのフレームワークは、アブレーション、学習アルゴリズムのチューニング可能性、異なるハイパーパラメータ空間にわたる最適化動作に関する洞察を提供する。
我々は、HPO問題の相互作用構造を解析し、様々なHPOベンチマーク上でHyperSHAPを評価する。
その結果,高次相互作用は存在するものの,低次表現に着目してほとんどの性能改善が説明できることがわかった。
関連論文リスト
- Parameter Optimization with Conscious Allocation (POCA) [4.478575931884855]
ハイパーバンドベースの機械学習アプローチが最も効果的である。
私たちは出席します。
新人
Conscious Allocation (POCA) は、入力を適応的に割り当てるハイパーバンドベースのアルゴリズムである。
ハイパーパラメータの構成に予算を割り当てます
POCAは、両方の設定で強い設定を高速に見つける。
論文 参考訳(メタデータ) (2023-12-29T00:13:55Z) - Interactive Hyperparameter Optimization in Multi-Objective Problems via
Preference Learning [65.51668094117802]
我々は多目的機械学習(ML)に適した人間中心型対話型HPO手法を提案する。
ユーザが自分のニーズに最も適した指標を推測する代わりに、私たちのアプローチは自動的に適切な指標を学習します。
論文 参考訳(メタデータ) (2023-09-07T09:22:05Z) - Deep Ranking Ensembles for Hyperparameter Optimization [9.453554184019108]
本稿では,メタ学習型ニューラルネットワークが構成性能のランク付けに最適化され,アンサンブルによる不確実性をモデル化する手法を提案する。
12のベースライン、16のHPO検索スペース、86のデータセット/タスクからなる大規模実験プロトコルにおいて、本手法がHPOの新たな最先端結果を実現することを示す。
論文 参考訳(メタデータ) (2023-03-27T13:52:40Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
我々は,テキストベースのトランスフォーマーHPOフレームワークであるOptFormerを紹介した。
実験の結果,OptFormerは少なくとも7種類のHPOアルゴリズムを模倣できることがわかった。
論文 参考訳(メタデータ) (2022-05-26T12:51:32Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
ハイパーパラメータチューニングのための勾配に基づくサブセット選択フレームワークを提案する。
ハイパーパラメータチューニングに勾配ベースのデータサブセットを用いることで、3$times$-30$times$のターンアラウンド時間とスピードアップが大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-03-15T19:25:01Z) - Towards Robust and Automatic Hyper-Parameter Tunning [39.04604349338802]
我々は,新しいHPO法を導入し,畳み込みネットワークの中間層の低ランク因子分解を用いて解析応答面を定義する方法について検討する。
我々は,この表面がモデル性能の代理としてどのように振る舞うかを定量化し,オートHyperと呼ぶ信頼領域探索アルゴリズムを用いて解くことができる。
論文 参考訳(メタデータ) (2021-11-28T05:27:34Z) - Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
Open Challenges [5.139260825952818]
本稿では,グリッドやランダム検索,進化アルゴリズム,ベイズ最適化,ハイパーバンド,レースなどの重要なHPO手法について述べる。
HPOアルゴリズム自体、パフォーマンス評価、HPOとMLパイプラインの結合方法、ランタイムの改善、並列化など、HPOの実行時に行うべき重要な選択について、実用的なレコメンデーションを提供する。
論文 参考訳(メタデータ) (2021-07-13T04:55:47Z) - HyperNP: Interactive Visual Exploration of Multidimensional Projection
Hyperparameters [61.354362652006834]
HyperNPは、ニューラルネットワーク近似をトレーニングすることで、プロジェクションメソッドをリアルタイムにインタラクティブに探索できるスケーラブルな方法である。
我々は3つのデータセット間でのHyperNPの性能を,性能と速度の観点から評価した。
論文 参考訳(メタデータ) (2021-06-25T17:28:14Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
ゼロ階超勾配(HOZOG)を用いた新しいハイパーパラメータ最適化法を提案する。
具体的には、A型制約最適化問題として、まずハイパーパラメータ最適化を定式化する。
次に、平均ゼロ階超勾配を用いてハイパーパラメータを更新する。
論文 参考訳(メタデータ) (2021-02-17T21:03:05Z) - HyperSTAR: Task-Aware Hyperparameters for Deep Networks [52.50861379908611]
HyperSTARは、ディープニューラルネットワークのためのHPOをウォームスタートするタスク認識方式である。
生の画像から直接、データセット(タスク)表現とパフォーマンス予測器を学習する。
既存のメソッドと比較して、最高のパフォーマンスを達成するために、構成を50%少なく評価する。
論文 参考訳(メタデータ) (2020-05-21T08:56:50Z) - Automatic Hyper-Parameter Optimization Based on Mapping Discovery from
Data to Hyper-Parameters [3.37314595161109]
本稿では,データから対応するハイパーパラメータへのマッピングに基づく,効率的な自動パラメータ最適化手法を提案する。
提案手法は最先端のアポラッチを著しく上回ることを示す。
論文 参考訳(メタデータ) (2020-03-03T19:26:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。