A Framework for Double-Blind Federated Adaptation of Foundation Models
- URL: http://arxiv.org/abs/2502.01289v1
- Date: Mon, 03 Feb 2025 12:00:11 GMT
- Title: A Framework for Double-Blind Federated Adaptation of Foundation Models
- Authors: Nurbek Tastan, Karthik Nandakumar,
- Abstract summary: We propose a framework for double-blind federated adaptation of FMs using fully homomorphic encryption (FHE)
The proposed framework first decomposes the FM into a sequence of FHE-friendly blocks through knowledge distillation.
The resulting FHE-friendly model is adapted for the downstream task via low-rank parallel adapters.
- Score: 4.910367774892893
- License:
- Abstract: The availability of foundational models (FMs) pre-trained on large-scale data has advanced the state-of-the-art in many computer vision tasks. While FMs have demonstrated good zero-shot performance on many image classification tasks, there is often scope for performance improvement by adapting the FM to the downstream task. However, the data that is required for this adaptation typically exists in silos across multiple entities (data owners) and cannot be collated at a central location due to regulations and privacy concerns. At the same time, a learning service provider (LSP) who owns the FM cannot share the model with the data owners due to proprietary reasons. In some cases, the data owners may not even have the resources to store such large FMs. Hence, there is a need for algorithms to adapt the FM in a double-blind federated manner, i.e., the data owners do not know the FM or each other's data, and the LSP does not see the data for the downstream tasks. In this work, we propose a framework for double-blind federated adaptation of FMs using fully homomorphic encryption (FHE). The proposed framework first decomposes the FM into a sequence of FHE-friendly blocks through knowledge distillation. The resulting FHE-friendly model is adapted for the downstream task via low-rank parallel adapters that can be learned without backpropagation through the FM. Since the proposed framework requires the LSP to share intermediate representations with the data owners, we design a privacy-preserving permutation scheme to prevent the data owners from learning the FM through model extraction attacks. Finally, a secure aggregation protocol is employed for federated learning of the low-rank parallel adapters. Empirical results on four datasets demonstrate the practical feasibility of the proposed framework.
Related papers
- Synergizing Foundation Models and Federated Learning: A Survey [23.416321895575507]
This paper discusses the potentials and challenges of synergizing Federated Learning (FL) and Foundation Models (FM)
FL is a collaborative learning paradigm that breaks the barrier of data availability from different participants.
It provides a promising solution to customize and adapt FMs to a wide range of domain-specific tasks using distributed datasets whilst preserving privacy.
arXiv Detail & Related papers (2024-06-18T17:58:09Z) - FedPFT: Federated Proxy Fine-Tuning of Foundation Models [55.58899993272904]
Adapting Foundation Models (FMs) for downstream tasks through Federated Learning (FL) emerges as a promising strategy for protecting data privacy and valuable FMs.
Existing methods fine-tune FM by allocating sub-FM to clients in FL, leading to suboptimal performance due to insufficient tuning and inevitable error accumulations of gradients.
We propose Federated Proxy Fine-Tuning (FedPFT), a novel method enhancing FMs adaptation in downstream tasks through FL by two key modules.
arXiv Detail & Related papers (2024-04-17T16:30:06Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - EdgeFM: Leveraging Foundation Model for Open-set Learning on the Edge [15.559604113977294]
We propose EdgeFM, a novel edge-cloud cooperative system with open-set recognition capability.
We show that EdgeFM can reduce the end-to-end latency up to 3.2x and achieve 34.3% accuracy increase compared with the baseline.
arXiv Detail & Related papers (2023-11-18T06:40:39Z) - VideoGLUE: Video General Understanding Evaluation of Foundation Models [89.07145427268948]
We evaluate video understanding capabilities of foundation models (FMs) using a carefully designed experiment protocol.
We jointly profile FMs' hallmark and efficacy efficiency when adapting to general video understanding tasks.
arXiv Detail & Related papers (2023-07-06T17:47:52Z) - Federated Foundation Models: Privacy-Preserving and Collaborative Learning for Large Models [8.184714897613166]
We propose the Federated Foundation Models (FFMs) paradigm, which combines the benefits of FMs and Federated Learning (FL)
We discuss the potential benefits and challenges of integrating FL into the lifespan of FMs, covering pre-training, fine-tuning, and application.
We explore the possibility of continual/lifelong learning in FFMs, as increased computational power at the edge may unlock the potential for optimizing FMs using newly generated private data close to the data source.
arXiv Detail & Related papers (2023-05-19T03:51:59Z) - FedFM: Anchor-based Feature Matching for Data Heterogeneity in Federated
Learning [91.74206675452888]
We propose a novel method FedFM, which guides each client's features to match shared category-wise anchors.
To achieve higher efficiency and flexibility, we propose a FedFM variant, called FedFM-Lite, where clients communicate with server with fewer synchronization times and communication bandwidth costs.
arXiv Detail & Related papers (2022-10-14T08:11:34Z) - Boosting Factorization Machines via Saliency-Guided Mixup [125.15872106335692]
We present MixFM, inspired by Mixup, to generate auxiliary training data to boost Factorization machines (FMs)
We also put forward a novel Factorization Machine powered by Saliency-guided Mixup (denoted as SMFM)
arXiv Detail & Related papers (2022-06-17T09:49:00Z) - Federated Learning from Only Unlabeled Data with
Class-Conditional-Sharing Clients [98.22390453672499]
Supervised federated learning (FL) enables multiple clients to share the trained model without sharing their labeled data.
We propose federation of unsupervised learning (FedUL), where the unlabeled data are transformed into surrogate labeled data for each of the clients.
arXiv Detail & Related papers (2022-04-07T09:12:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.