Federated Foundation Models: Privacy-Preserving and Collaborative Learning for Large Models
- URL: http://arxiv.org/abs/2305.11414v3
- Date: Tue, 19 Mar 2024 20:04:43 GMT
- Title: Federated Foundation Models: Privacy-Preserving and Collaborative Learning for Large Models
- Authors: Sixing Yu, J. Pablo Muñoz, Ali Jannesari,
- Abstract summary: We propose the Federated Foundation Models (FFMs) paradigm, which combines the benefits of FMs and Federated Learning (FL)
We discuss the potential benefits and challenges of integrating FL into the lifespan of FMs, covering pre-training, fine-tuning, and application.
We explore the possibility of continual/lifelong learning in FFMs, as increased computational power at the edge may unlock the potential for optimizing FMs using newly generated private data close to the data source.
- Score: 8.184714897613166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation Models (FMs), such as LLaMA, BERT, GPT, ViT, and CLIP, have demonstrated remarkable success in a wide range of applications, driven by their ability to leverage vast amounts of data for pre-training. However, optimizing FMs often requires access to sensitive data, raising privacy concerns and limiting their applicability in many domains. In this paper, we propose the Federated Foundation Models (FFMs) paradigm, which combines the benefits of FMs and Federated Learning (FL) to enable privacy-preserving and collaborative learning across multiple end-users. We discuss the potential benefits and challenges of integrating FL into the lifespan of FMs, covering pre-training, fine-tuning, and application. We further outline potential future research avenues in FFM, including FFM pre-training, FFM fine-tuning, and federated prompt tuning, which allow the development of more personalized and context-aware models while ensuring data privacy. Moreover, we explore the possibility of continual/lifelong learning in FFMs, as increased computational power at the edge may unlock the potential for optimizing FMs using newly generated private data close to the data source. The proposed FFM concepts offer a flexible and scalable framework for training large language models in a privacy-preserving manner, setting the stage for subsequent advancements in both FM training and federated learning.
Related papers
- Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
This paper surveys Federated learning for LLMs (FedLLM), highlighting recent advances and future directions.
We focus on two key aspects: fine-tuning and prompt learning in a federated setting, discussing existing work and associated research challenges.
arXiv Detail & Related papers (2024-09-24T04:14:33Z) - Synergizing Foundation Models and Federated Learning: A Survey [23.416321895575507]
This paper discusses the potentials and challenges of synergizing Federated Learning (FL) and Foundation Models (FM)
FL is a collaborative learning paradigm that breaks the barrier of data availability from different participants.
It provides a promising solution to customize and adapt FMs to a wide range of domain-specific tasks using distributed datasets whilst preserving privacy.
arXiv Detail & Related papers (2024-06-18T17:58:09Z) - Navigating the Future of Federated Recommendation Systems with Foundation Models [27.371579064251343]
In recent years, the integration of federated learning (FL) and recommendation systems (RS), known as Federated Recommendation Systems (FRS), has attracted attention for preserving user privacy by keeping private data on client devices.
However, FRS faces inherent limitations such as data heterogeneity and scarcity, due to the privacy requirements of FL and the typical data sparsity issues of RSs.
In this study, we conduct a comprehensive review of FRSs with Foundation Models (FMs)
arXiv Detail & Related papers (2024-05-12T04:15:05Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Grounding Foundation Models through Federated Transfer Learning: A
General Framework [20.341440265217496]
Foundation Models (FMs) such as GPT-4 have achieved remarkable success in various natural language processing and computer vision tasks.
Grounding FMs by adapting them to domain-specific tasks or augmenting them with domain-specific knowledge enables us to exploit the full potential of FMs.
In recent years, the need for grounding FMs leveraging Federated Transfer Learning (FTL) has arisen strongly in both academia and industry.
Motivated by the strong growth in FTL-FM research and the potential impact of FTL-FM on industrial applications, we propose an FTL-FM framework that formulates problems of
arXiv Detail & Related papers (2023-11-29T08:21:42Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
Foundation models (FMs) are general-purpose artificial intelligence (AI) models that have recently enabled multiple brand-new generative AI applications.
Currently, the exploration of the interplay between FMs and federated learning (FL) is still in its nascent stage.
This article explores the extent to which FMs are suitable for FL over wireless networks, including a broad overview of research challenges and opportunities.
arXiv Detail & Related papers (2023-10-06T04:13:10Z) - When Foundation Model Meets Federated Learning: Motivations, Challenges,
and Future Directions [47.00147534252281]
The intersection of the Foundation Model (FM) and Federated Learning (FL) provides mutual benefits.
FL expands the availability of data for FMs and enables computation sharing, distributing the training process and reducing the burden on FL participants.
On the other hand, FM, with its enormous size, pre-trained knowledge, and exceptional performance, serves as a robust starting point for FL.
arXiv Detail & Related papers (2023-06-27T15:15:55Z) - Collaborating Heterogeneous Natural Language Processing Tasks via
Federated Learning [55.99444047920231]
The proposed ATC framework achieves significant improvements compared with various baseline methods.
We conduct extensive experiments on six widely-used datasets covering both Natural Language Understanding (NLU) and Natural Language Generation (NLG) tasks.
arXiv Detail & Related papers (2022-12-12T09:27:50Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.