ConceptVAE: Self-Supervised Fine-Grained Concept Disentanglement from 2D Echocardiographies
- URL: http://arxiv.org/abs/2502.01335v1
- Date: Mon, 03 Feb 2025 13:18:01 GMT
- Title: ConceptVAE: Self-Supervised Fine-Grained Concept Disentanglement from 2D Echocardiographies
- Authors: Costin F. Ciusdel, Alex Serban, Tiziano Passerini,
- Abstract summary: ConceptVAE is a novel pre-training framework that detects and disentangles fine-grained concepts from their style characteristics in a self-supervised manner.<n>We present a suite of loss terms and model architecture primitives designed to discretise input data into a preset number of concepts along with their local style.<n>We validate ConceptVAE both qualitatively and quantitatively, demonstrating its ability to detect fine-grained anatomical structures such as blood pools and septum walls from 2D cardiac echocardiographies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While traditional self-supervised learning methods improve performance and robustness across various medical tasks, they rely on single-vector embeddings that may not capture fine-grained concepts such as anatomical structures or organs. The ability to identify such concepts and their characteristics without supervision has the potential to improve pre-training methods, and enable novel applications such as fine-grained image retrieval and concept-based outlier detection. In this paper, we introduce ConceptVAE, a novel pre-training framework that detects and disentangles fine-grained concepts from their style characteristics in a self-supervised manner. We present a suite of loss terms and model architecture primitives designed to discretise input data into a preset number of concepts along with their local style. We validate ConceptVAE both qualitatively and quantitatively, demonstrating its ability to detect fine-grained anatomical structures such as blood pools and septum walls from 2D cardiac echocardiographies. Quantitatively, ConceptVAE outperforms traditional self-supervised methods in tasks such as region-based instance retrieval, semantic segmentation, out-of-distribution detection, and object detection. Additionally, we explore the generation of in-distribution synthetic data that maintains the same concepts as the training data but with distinct styles, highlighting its potential for more calibrated data generation. Overall, our study introduces and validates a promising new pre-training technique based on concept-style disentanglement, opening multiple avenues for developing models for medical image analysis that are more interpretable and explainable than black-box approaches.
Related papers
- Towards generating more interpretable counterfactuals via concept vectors: a preliminary study on chest X-rays [46.667021835430155]
We map clinical concepts into the latent space of generative models to identify Concept Activation Vectors (CAVs)<n>The extracted concepts are stable across datasets, enabling visual explanations that highlight clinically relevant features.<n>Preliminary results on chest X-rays show promise for large pathologies like cardiomegaly, while smaller pathologies remain challenging.
arXiv Detail & Related papers (2025-06-04T15:23:12Z) - Concept-Guided Interpretability via Neural Chunking [54.73787666584143]
We show that neural networks exhibit patterns in their raw population activity that mirror regularities in the training data.<n>We propose three methods to extract these emerging entities, complementing each other based on label availability and dimensionality.<n>Our work points to a new direction for interpretability, one that harnesses both cognitive principles and the structure of naturalistic data.
arXiv Detail & Related papers (2025-05-16T13:49:43Z) - Meta-Representational Predictive Coding: Biomimetic Self-Supervised Learning [51.22185316175418]
We present a new form of predictive coding that we call meta-representational predictive coding (MPC)
MPC sidesteps the need for learning a generative model of sensory input by learning to predict representations of sensory input across parallel streams.
arXiv Detail & Related papers (2025-03-22T22:13:14Z) - A Two-Step Concept-Based Approach for Enhanced Interpretability and Trust in Skin Lesion Diagnosis [6.6635650150737815]
Concept Bottleneck Models (CBMs) offer inherent interpretability by constraining the final disease prediction on a set of human-understandable concepts.
We introduce a novel two-step methodology that addresses both of these challenges.
By simulating the two stages of a CBM, we utilize a pretrained Vision Language Model (VLM) to automatically predict clinical concepts, and an off-the-shelf Large Language Model (LLM) to generate disease diagnoses.
arXiv Detail & Related papers (2024-11-08T14:52:42Z) - Concept Complement Bottleneck Model for Interpretable Medical Image Diagnosis [8.252227380729188]
We propose a concept complement bottleneck model for interpretable medical image diagnosis.<n>We propose to use concept adapters for specific concepts to mine the concept differences and score concepts in their own attention channels.<n>Our model outperforms the state-of-the-art competitors in concept detection and disease diagnosis tasks.
arXiv Detail & Related papers (2024-10-20T16:52:09Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Restyling Unsupervised Concept Based Interpretable Networks with Generative Models [14.604305230535026]
We propose a novel method that relies on mapping the concept features to the latent space of a pretrained generative model.
We quantitatively ascertain the efficacy of our method in terms of accuracy of the interpretable prediction network, fidelity of reconstruction, as well as faithfulness and consistency of learnt concepts.
arXiv Detail & Related papers (2024-07-01T14:39:41Z) - MICA: Towards Explainable Skin Lesion Diagnosis via Multi-Level
Image-Concept Alignment [4.861768967055006]
We propose a multi-modal explainable disease diagnosis framework that meticulously aligns medical images and clinical-related concepts semantically at multiple strata.
Our method, while preserving model interpretability, attains high performance and label efficiency for concept detection and disease diagnosis.
arXiv Detail & Related papers (2024-01-16T17:45:01Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images.
We present the Geom-Erasing, a novel concept removal method based on the geometric-driven control.
arXiv Detail & Related papers (2023-10-09T17:13:10Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Uncovering Unique Concept Vectors through Latent Space Decomposition [0.0]
Concept-based explanations have emerged as a superior approach that is more interpretable than feature attribution estimates.
We propose a novel post-hoc unsupervised method that automatically uncovers the concepts learned by deep models during training.
Our experiments reveal that the majority of our concepts are readily understandable to humans, exhibit coherency, and bear relevance to the task at hand.
arXiv Detail & Related papers (2023-07-13T17:21:54Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.