SPFFNet: Strip Perception and Feature Fusion Spatial Pyramid Pooling for Fabric Defect Detection
- URL: http://arxiv.org/abs/2502.01445v2
- Date: Tue, 04 Feb 2025 03:25:51 GMT
- Title: SPFFNet: Strip Perception and Feature Fusion Spatial Pyramid Pooling for Fabric Defect Detection
- Authors: Peizhe Zhao,
- Abstract summary: We propose an improved fabric defect detection model based on YOLOv11.
We introduce a Strip Perception Module (SPM) that improves feature capture through multi-scale convolution.
We also propose a novel focal enhanced complete intersection over union (FECIoU) metric with adaptive weights.
- Score: 0.0
- License:
- Abstract: Defect detection in fabrics is critical for quality control, yet existing methods often struggle with complex backgrounds and shape-specific defects. In this paper, we propose an improved fabric defect detection model based on YOLOv11. To enhance the detection of strip defects, we introduce a Strip Perception Module (SPM) that improves feature capture through multi-scale convolution. We further enhance the spatial pyramid pooling fast (SPPF) by integrating a squeeze-and-excitation mechanism, resulting in the SE-SPPF module, which better integrates spatial and channel information for more effective defect feature extraction. Additionally, we propose a novel focal enhanced complete intersection over union (FECIoU) metric with adaptive weights, addressing scale differences and class imbalance by adjusting the weights of hard-to-detect instances through focal loss. Experimental results demonstrate that our model achieves a 0.8-8.1% improvement in mean average precision (mAP) on the Tianchi dataset and a 1.6-13.2% improvement on our custom dataset, outperforming other state-of-the-art methods.
Related papers
- Fab-ME: A Vision State-Space and Attention-Enhanced Framework for Fabric Defect Detection [4.272401529389713]
We propose Fab-ME, an advanced framework based on YOLOv8s for accurate detection of 20 fabric defect types.
Our contributions include the introduction of the cross-stage partial bottleneck with two convolutions (C2F) vision state-space (C2F-VMamba) module.
Experimental results on the Tianchi fabric defect detection dataset demonstrate that Fab-ME achieves a 3.5% improvement in mAP@0.5 compared to the original YOLOv8s.
arXiv Detail & Related papers (2024-12-04T10:40:17Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - Joint Attention-Guided Feature Fusion Network for Saliency Detection of
Surface Defects [69.39099029406248]
We propose a joint attention-guided feature fusion network (JAFFNet) for saliency detection of surface defects based on the encoder-decoder network.
JAFFNet mainly incorporates a joint attention-guided feature fusion (JAFF) module into decoding stages to adaptively fuse low-level and high-level features.
Experiments conducted on SD-saliency-900, Magnetic tile, and DAGM 2007 indicate that our method achieves promising performance in comparison with other state-of-the-art methods.
arXiv Detail & Related papers (2024-02-05T08:10:16Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Bring Metric Functions into Diffusion Models [145.71911023514252]
We introduce a Cascaded Diffusion Model (Cas-DM) that improves a Denoising Diffusion Probabilistic Model (DDPM)
The proposed diffusion model backbone enables the effective use of the LPIPS loss, leading to state-of-the-art image quality (FID, sFID, IS)
Experiment results show that the proposed diffusion model backbone enables the effective use of the LPIPS loss, leading to state-of-the-art image quality (FID, sFID, IS)
arXiv Detail & Related papers (2024-01-04T18:55:01Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - AMSP-UOD: When Vortex Convolution and Stochastic Perturbation Meet
Underwater Object Detection [40.532331552038485]
We present a novel Amplitude-Modulated Perturbation and Vortex Convolutional Network, AMSP-UOD.
AMSP-UOD addresses the impact of non-ideal imaging factors on detection accuracy in complex underwater environments.
Our method outperforms existing state-of-the-art methods in terms of accuracy and noise immunity.
arXiv Detail & Related papers (2023-08-23T05:03:45Z) - SEMI-DiffusionInst: A Diffusion Model Based Approach for Semiconductor
Defect Classification and Segmentation [0.11999555634662631]
This work is the first demonstration to accurately detect and precisely segment semiconductor defect patterns by using a diffusion model.
Our proposed approach outperforms previous work on overall mAP and performs comparatively better or as per for almost all defect classes.
arXiv Detail & Related papers (2023-07-17T17:53:36Z) - Lightweight wood panel defect detection method incorporating attention
mechanism and feature fusion network [9.775181958901326]
We propose a lightweight wood panel defect detection method called YOLOv5-LW, which incorporates attention mechanisms and a feature fusion network.
The proposed method achieves a 92.8% accuracy rate, reduces the number of parameters by 27.78%, compresses computational volume by 41.25%, improves detection inference speed by 10.16%.
arXiv Detail & Related papers (2023-06-21T08:55:45Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.