論文の概要: Process Reinforcement through Implicit Rewards
- arxiv url: http://arxiv.org/abs/2502.01456v1
- Date: Mon, 03 Feb 2025 15:43:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:05:47.550250
- Title: Process Reinforcement through Implicit Rewards
- Title(参考訳): インシシット・リワードによるプロセス強化
- Authors: Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, Ning Ding,
- Abstract要約: 複雑なプロセス報酬は、大きな言語モデル(LLM)の推論時間スケーリングにおいて、スパースな結果レベルの報酬よりも効果的な選択肢であることが証明されている。
ディエンス報酬は、その微粒な報酬が結果報酬の固有の問題に対処する可能性があるため、LLMの強化学習(RL)に魅力的な選択を与える。
これは主に、高品質なプロセスラベルの収集が違法に高価であるオンラインのトレーニングプロセス報酬モデル(PRM)の課題に起因する可能性がある。
提案するPRIMEは,ポリシロールアウトと結果ラベルのみを用いて,インプットプロセス報酬によるオンラインPRM更新を可能にする。
- 参考スコア(独自算出の注目度): 95.7442934212076
- License:
- Abstract: Dense process rewards have proven a more effective alternative to the sparse outcome-level rewards in the inference-time scaling of large language models (LLMs), particularly in tasks requiring complex multi-step reasoning. While dense rewards also offer an appealing choice for the reinforcement learning (RL) of LLMs since their fine-grained rewards have the potential to address some inherent issues of outcome rewards, such as training efficiency and credit assignment, this potential remains largely unrealized. This can be primarily attributed to the challenges of training process reward models (PRMs) online, where collecting high-quality process labels is prohibitively expensive, making them particularly vulnerable to reward hacking. To address these challenges, we propose PRIME (Process Reinforcement through IMplicit rEwards), which enables online PRM updates using only policy rollouts and outcome labels through implict process rewards. PRIME combines well with various advantage functions and forgoes the dedicated reward model training phrase that existing approaches require, substantially reducing the development overhead. We demonstrate PRIME's effectiveness on competitional math and coding. Starting from Qwen2.5-Math-7B-Base, PRIME achieves a 15.1% average improvement across several key reasoning benchmarks over the SFT model. Notably, our resulting model, Eurus-2-7B-PRIME, surpasses Qwen2.5-Math-7B-Instruct on seven reasoning benchmarks with 10% of its training data.
- Abstract(参考訳): 複雑な多段階推論を必要とするタスクにおいて、大規模言語モデル(LLM)の推論時間スケーリングにおいて、複雑なプロセス報酬は、疎結果レベルの報酬のより効果的な代替手段であることが証明されている。
厳密な報酬はまた、LLMの強化学習(RL)に魅力的な選択肢を提供するが、その微粒な報酬は、トレーニング効率やクレジット代入といった結果報酬の本質的な問題に対処する可能性があるため、この可能性はほとんど実現されていない。
これは主に、高品質なプロセスラベルの収集が違法に高価であることから、オンラインのトレーニングプロセス報酬モデル(PRM)の課題に起因する可能性がある。
これらの課題に対処するため,PRIME(Process Reinforcement through IMplicit rEwards)を提案する。
PRIMEは、様々な利点関数とうまく結合し、既存のアプローチが必要とする専用の報酬モデルトレーニングフレーズを強制し、開発オーバーヘッドを大幅に削減します。
PRIMEの競合数学と符号化における有効性を示す。
Qwen2.5-Math-7Bベースから始めて、PRIMEはSFTモデルに対するいくつかの主要な推論ベンチマークで平均15.1%の改善を達成した。
特に、私たちのモデルであるEuros-2-7B-PRIMEは、トレーニングデータの10%を持つ7つの推論ベンチマークでQwen2.5-Math-7B-Instructを上回りました。
関連論文リスト
- On Designing Effective RL Reward at Training Time for LLM Reasoning [14.006845442313134]
我々は,Reward Model(ORM)やProcess-supervised Reward Model(PRM)など,RLトレーニングの一般的な報酬モデルを評価する。
驚くべきことに、これらの学習された報酬モデルは推論時のパフォーマンスが強いにもかかわらず、RLトレーニングを助けたり、傷つけたりしないかもしれない。
Clipping と Delta の2つの新しい報酬改善手法を紹介した。
論文 参考訳(メタデータ) (2024-10-19T13:53:50Z) - Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning [90.23629291067763]
大規模言語モデルにおける推論を改善するための有望なアプローチは、プロセス報酬モデル(PRM)を使用することである。
PRMは多段階の推論トレースの各ステップでフィードバックを提供し、結果報酬モデル(ORM)よりも信用割当を改善する可能性がある。
PRMに対して探索を行ったり、強化学習(RL)の報酬として使ったりすることで、基本方針を改善するために、「プロセス報酬をどう設計すべきか?」と質問する。
理論的には,良質なプロデューサの集合を特徴付けるとともに,このようなプロデューサからのプロセス報酬の最適化が,テスト時間探索やオンラインRLの探索を改善することを示す。
論文 参考訳(メタデータ) (2024-10-10T17:31:23Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - Training Large Language Models for Reasoning through Reverse Curriculum Reinforcement Learning [54.585428241509234]
逆カリキュラム強化学習(RL)によるR$3の学習推論を提案する。
RLは、大規模言語モデルのプロセス監視の利点を達成するために、結果監視のみを採用する。
論文 参考訳(メタデータ) (2024-02-08T16:46:26Z) - Dense Reward for Free in Reinforcement Learning from Human Feedback [64.92448888346125]
我々は報酬モデルが単にスカラー出力よりも多くの情報を含んでいるという事実を活用している。
私たちは、これらの注意重みを使って、完了全体に沿って報酬を再分配します。
経験的に、トレーニングを安定化し、学習速度を加速し、実際は、より良い局所最適性をもたらす可能性があることを示す。
論文 参考訳(メタデータ) (2024-02-01T17:10:35Z) - Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint [104.53687944498155]
強化学習(RL)は、大規模言語モデル(LLM)の訓練に広く用いられている。
本稿では,報酬モデルとして生成モデルを組み込んだRL法 RLMEC を提案する。
生成報酬モデルに基づいて、トレーニングのためのトークンレベルRL目標と、RLプロセスの安定化のための模倣ベース正規化を設計する。
論文 参考訳(メタデータ) (2024-01-11T17:58:41Z) - Mind the Gap: Offline Policy Optimization for Imperfect Rewards [14.874900923808408]
多様な不完全な報酬を処理できる統合オフラインポリシー最適化手法である textitRGM (Reward Gap Minimization) を提案する。
下位層の双対性を生かして,オンラインインタラクションを伴わずにサンプルベースの学習を可能にする,抽出可能なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2023-02-03T11:39:50Z) - Distributional Reward Estimation for Effective Multi-Agent Deep
Reinforcement Learning [19.788336796981685]
実効的マルチエージェント強化学習(DRE-MARL)のための分散逆推定フレームワークを提案する。
本研究の目的は,安定トレーニングのための多行動分岐報酬推定と政策重み付け報酬アグリゲーションを設計することである。
DRE-MARLの優位性は,有効性とロバスト性の両方の観点から,SOTAベースラインと比較して,ベンチマークマルチエージェントシナリオを用いて実証される。
論文 参考訳(メタデータ) (2022-10-14T08:31:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。