論文の概要: Position: Empowering Time Series Reasoning with Multimodal LLMs
- arxiv url: http://arxiv.org/abs/2502.01477v1
- Date: Mon, 03 Feb 2025 16:10:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:03:00.520530
- Title: Position: Empowering Time Series Reasoning with Multimodal LLMs
- Title(参考訳): 位置:マルチモーダルLDMを用いた時系列推論
- Authors: Yaxuan Kong, Yiyuan Yang, Shiyu Wang, Chenghao Liu, Yuxuan Liang, Ming Jin, Stefan Zohren, Dan Pei, Yan Liu, Qingsong Wen,
- Abstract要約: マルチモーダル言語モデル (MLLM) は時系列解析においてより強力で柔軟な推論を可能にすると論じる。
我々は、MLLMにおける信頼、解釈可能性、堅牢な推論を優先する戦略を開発することで、この可能性を活用するよう研究者や実践者に呼びかける。
- 参考スコア(独自算出の注目度): 49.73647759532127
- License:
- Abstract: Understanding time series data is crucial for multiple real-world applications. While large language models (LLMs) show promise in time series tasks, current approaches often rely on numerical data alone, overlooking the multimodal nature of time-dependent information, such as textual descriptions, visual data, and audio signals. Moreover, these methods underutilize LLMs' reasoning capabilities, limiting the analysis to surface-level interpretations instead of deeper temporal and multimodal reasoning. In this position paper, we argue that multimodal LLMs (MLLMs) can enable more powerful and flexible reasoning for time series analysis, enhancing decision-making and real-world applications. We call on researchers and practitioners to leverage this potential by developing strategies that prioritize trust, interpretability, and robust reasoning in MLLMs. Lastly, we highlight key research directions, including novel reasoning paradigms, architectural innovations, and domain-specific applications, to advance time series reasoning with MLLMs.
- Abstract(参考訳): 時系列データを理解することは、複数の実世界のアプリケーションにとって不可欠である。
大規模言語モデル(LLM)は時系列タスクにおいて有望であるが、現在のアプローチは、テキスト記述、視覚データ、音声信号などの時間依存情報のマルチモーダルな性質を見越して、数値データのみに依存していることが多い。
さらに、これらの手法はLLMの推論能力を弱め、解析を時間的・マルチモーダルな推論ではなく、表面レベルでの解釈に限定する。
本稿では,マルチモーダル LLM (MLLM) が時系列解析においてより強力で柔軟な推論を可能にし,意思決定や実世界の応用を向上することができることを論じる。
我々は、MLLMにおける信頼、解釈可能性、堅牢な推論を優先する戦略を開発することで、この可能性を活用するよう研究者や実践者に呼びかける。
最後に,新たな推論パラダイム,アーキテクチャの革新,ドメイン固有のアプリケーションなど,MLLMによる時系列推論を先進的に進めるための重要な研究方向を強調した。
関連論文リスト
- Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark [73.27104042215207]
EMMAは,数学,物理,化学,コーディングにまたがる有機マルチモーダル推論を対象とするベンチマークである。
EMMAタスクは、各モードで独立に推論することで対処できない高度なクロスモーダル推論を要求する。
EMMA上での最先端MLLMの評価は、複雑なマルチモーダルおよびマルチステップ推論タスクの処理において、重大な制限を生じさせる。
論文 参考訳(メタデータ) (2025-01-09T18:55:52Z) - Towards Time Series Reasoning with LLMs [0.4369058206183195]
本稿では,ゼロショット性能の強い領域にまたがる一般化可能な情報を学習する,新しいマルチモーダル時系列LPM手法を提案する。
提案モデルでは,特定の時系列特徴を反映した潜時表現を学習し,ゼロショット推論タスクのセットにおいてGPT-4oより優れることを示す。
論文 参考訳(メタデータ) (2024-09-17T17:23:44Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - Evaluating Large Language Models on Time Series Feature Understanding: A Comprehensive Taxonomy and Benchmark [13.490168087823992]
大規模言語モデル(LLM)は、自動時系列分析とレポートの可能性を秘めている。
本稿では時系列データに固有の様々な特徴を記述した重要なフレームワークである時系列特徴の包括的分類法を紹介する。
このデータセットは、コンパイル時系列におけるLCMの熟練度を評価するための確かな基盤として機能する。
論文 参考訳(メタデータ) (2024-04-25T12:24:37Z) - Empowering Time Series Analysis with Large Language Models: A Survey [24.202539098675953]
本稿では,大規模言語モデルを用いた時系列解析手法の体系的概要について述べる。
具体的には、まず、時系列の文脈で言語モデルを適用する際の課題とモチベーションについて述べる。
次に、既存のメソッドを異なるグループ(ダイレクトクエリ、トークン化、プロンプトデザイン、ファインチューン、モデル統合)に分類し、各グループにおける主要なアイデアを強調します。
論文 参考訳(メタデータ) (2024-02-05T16:46:35Z) - Position: What Can Large Language Models Tell Us about Time Series Analysis [69.70906014827547]
現在の大規模言語モデル(LLM)は時系列解析に革命をもたらす可能性があると我々は主張する。
このような進歩は、時系列のモダリティスイッチングや質問応答など、幅広い可能性を解き放つ可能性がある。
論文 参考訳(メタデータ) (2024-02-05T04:17:49Z) - Large Language Models for Time Series: A Survey [34.24258745427964]
大規模言語モデル (LLM) は自然言語処理やコンピュータビジョンといった領域で広く利用されている。
LLMは、気候、IoT、ヘルスケア、トラフィック、オーディオ、ファイナンスといった分野の恩恵を受けながら、時系列データを分析する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-02-02T07:24:35Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。