Unpaired Deblurring via Decoupled Diffusion Model
- URL: http://arxiv.org/abs/2502.01522v2
- Date: Fri, 30 May 2025 08:19:39 GMT
- Title: Unpaired Deblurring via Decoupled Diffusion Model
- Authors: Junhao Cheng, Wei-Ting Chen, Xi Lu, Ming-Hsuan Yang,
- Abstract summary: We propose UID-Diff, a generative-diffusion-based model designed to enhance deblurring performance on unknown domains.<n>We employ two Q-Formers as structural features and blur patterns extractors separately. The features extracted will be used for the supervised deblurring task on synthetic data and the unsupervised blur-transfer task.<n>Experiments on real-world datasets demonstrate that UID-Diff outperforms existing state-of-the-art methods in blur removal and structural preservation.
- Score: 55.21345354747609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative diffusion models trained on large-scale datasets have achieved remarkable progress in image synthesis. In favor of their ability to supplement missing details and generate aesthetically pleasing contents, recent works have applied them to image deblurring via training an adapter on blurry-sharp image pairs to provide structural conditions for restoration. However, acquiring substantial amounts of realistic paired data is challenging and costly in real-world scenarios. On the other hand, relying solely on synthetic data often results in overfitting, leading to unsatisfactory performance when confronted with unseen blur patterns. To tackle this issue, we propose UID-Diff, a generative-diffusion-based model designed to enhance deblurring performance on unknown domains by decoupling structural features and blur patterns through joint training on three specially designed tasks. We employ two Q-Formers as structural features and blur patterns extractors separately. The features extracted by them will be used for the supervised deblurring task on synthetic data and the unsupervised blur-transfer task by leveraging unpaired blurred images from the target domain simultaneously. We further introduce a reconstruction task to make the structural features and blur patterns complementary. This blur-decoupled learning process enhances the generalization capabilities of UID-Diff when encountering unknown blur patterns. Experiments on real-world datasets demonstrate that UID-Diff outperforms existing state-of-the-art methods in blur removal and structural preservation in various challenging scenarios.
Related papers
- HFMF: Hierarchical Fusion Meets Multi-Stream Models for Deepfake Detection [4.908389661988192]
HFMF is a comprehensive two-stage deepfake detection framework.<n>It integrates vision Transformers and convolutional nets through a hierarchical feature fusion mechanism.<n>We demonstrate that our architecture achieves superior performance across diverse dataset benchmarks.
arXiv Detail & Related papers (2025-01-10T00:20:29Z) - Adapting Diffusion Models for Improved Prompt Compliance and Controllable Image Synthesis [43.481539150288434]
This work introduces a new family of.
factor graph Diffusion Models (FG-DMs)
FG-DMs models the joint distribution of.
images and conditioning variables, such as semantic, sketch,.
deep or normal maps via a factor graph decomposition.
arXiv Detail & Related papers (2024-10-29T00:54:00Z) - Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting [49.87694319431288]
Generalist segmentation models are increasingly favored for diverse tasks involving various objects from different image sources.
We propose a Comprehensive Generative (CGR) framework that restores appearance and semantic knowledge by synthesizing image-mask pairs.
Experiments on incremental tasks (cardiac, fundus and prostate segmentation) show its clear advantage for alleviating concurrent appearance and semantic forgetting.
arXiv Detail & Related papers (2024-06-28T10:05:58Z) - SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder [13.453138169497903]
SeNM-VAE is a semi-supervised noise modeling method that leverages both paired and unpaired datasets to generate realistic degraded data.
We employ our method to generate paired training samples for real-world image denoising and super-resolution tasks.
Our approach excels in the quality of synthetic degraded images compared to other unpaired and paired noise modeling methods.
arXiv Detail & Related papers (2024-03-26T09:03:40Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Exposure Bracketing Is All You Need For A High-Quality Image [50.822601495422916]
Multi-exposure images are complementary in denoising, deblurring, high dynamic range imaging, and super-resolution.<n>We propose to utilize exposure bracketing photography to get a high-quality image by combining these tasks in this work.<n>In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed.
arXiv Detail & Related papers (2024-01-01T14:14:35Z) - Multi-View Unsupervised Image Generation with Cross Attention Guidance [23.07929124170851]
This paper introduces a novel pipeline for unsupervised training of a pose-conditioned diffusion model on single-category datasets.
We identify object poses by clustering the dataset through comparing visibility and locations of specific object parts.
Our model, MIRAGE, surpasses prior work in novel view synthesis on real images.
arXiv Detail & Related papers (2023-12-07T14:55:13Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - ObjectStitch: Generative Object Compositing [43.206123360578665]
We propose a self-supervised framework for object compositing using conditional diffusion models.
Our framework can transform the viewpoint, geometry, color and shadow of the generated object while requiring no manual labeling.
Our method outperforms relevant baselines in both realism and faithfulness of the synthesized result images in a user study on various real-world images.
arXiv Detail & Related papers (2022-12-02T02:15:13Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - Rethinking Blur Synthesis for Deep Real-World Image Deblurring [4.00114307523959]
We propose a novel realistic blur synthesis pipeline to simulate the camera imaging process.
We develop an effective deblurring model that captures non-local dependencies and local context in the feature domain simultaneously.
A comprehensive experiment on three real-world datasets shows that the proposed deblurring model performs better than state-of-the-art methods.
arXiv Detail & Related papers (2022-09-28T06:50:16Z) - MOGAN: Morphologic-structure-aware Generative Learning from a Single
Image [59.59698650663925]
Recently proposed generative models complete training based on only one image.
We introduce a MOrphologic-structure-aware Generative Adversarial Network named MOGAN that produces random samples with diverse appearances.
Our approach focuses on internal features including the maintenance of rational structures and variation on appearance.
arXiv Detail & Related papers (2021-03-04T12:45:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.