論文の概要: VR-Robo: A Real-to-Sim-to-Real Framework for Visual Robot Navigation and Locomotion
- arxiv url: http://arxiv.org/abs/2502.01536v1
- Date: Mon, 03 Feb 2025 17:15:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:56:46.979708
- Title: VR-Robo: A Real-to-Sim-to-Real Framework for Visual Robot Navigation and Locomotion
- Title(参考訳): VR-Robo:ビジュアルロボットナビゲーションとロコモーションのためのリアルタイム・ツー・リアルフレームワーク
- Authors: Shaoting Zhu, Linzhan Mou, Derun Li, Baijun Ye, Runhan Huang, Hang Zhao,
- Abstract要約: 本稿では,視覚ナビゲーションと移動学習のための物理的にインタラクティブな「デジタルツイン」シミュレーション環境を生成する,リアル・ツー・シム・トゥ・リアルのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 25.440573256776133
- License:
- Abstract: Recent success in legged robot locomotion is attributed to the integration of reinforcement learning and physical simulators. However, these policies often encounter challenges when deployed in real-world environments due to sim-to-real gaps, as simulators typically fail to replicate visual realism and complex real-world geometry. Moreover, the lack of realistic visual rendering limits the ability of these policies to support high-level tasks requiring RGB-based perception like ego-centric navigation. This paper presents a Real-to-Sim-to-Real framework that generates photorealistic and physically interactive "digital twin" simulation environments for visual navigation and locomotion learning. Our approach leverages 3D Gaussian Splatting (3DGS) based scene reconstruction from multi-view images and integrates these environments into simulations that support ego-centric visual perception and mesh-based physical interactions. To demonstrate its effectiveness, we train a reinforcement learning policy within the simulator to perform a visual goal-tracking task. Extensive experiments show that our framework achieves RGB-only sim-to-real policy transfer. Additionally, our framework facilitates the rapid adaptation of robot policies with effective exploration capability in complex new environments, highlighting its potential for applications in households and factories.
- Abstract(参考訳): 近年のロボット移動の成功は、強化学習と物理シミュレータの統合によるものである。
しかし、シミュレーターが視覚的リアリズムや複雑な実世界の幾何学を再現することができないため、これらのポリシーはシミュレート・トゥ・リアルのギャップによって現実の環境に展開する際の課題にしばしば遭遇する。
さらに、現実的なビジュアルレンダリングの欠如は、エゴ中心ナビゲーションのようなRGBベースの認識を必要とする高レベルタスクをサポートするためのこれらのポリシーの能力を制限する。
本稿では、視覚ナビゲーションと移動学習のための光リアルで物理的にインタラクティブな「デジタルツイン」シミュレーション環境を生成するリアル・ツー・シム・トゥ・リアルのフレームワークを提案する。
提案手法は,多視点画像からの3Dガウススプラッティング(3DGS)に基づくシーン再構成を活用し,エゴ中心の視覚知覚とメッシュベースの物理的相互作用をサポートするシミュレーションにこれらの環境を統合する。
その効果を示すため、シミュレータ内で強化学習ポリシーを訓練し、視覚目標追跡タスクを実行する。
大規模な実験により,本フレームワークはRGBのみのsim-to-realポリシー転送を実現することが示された。
さらに,本フレームワークは,複雑な新環境における効率的な探索能力を備えたロボット政策の迅速な適応を促進し,家庭や工場への応用の可能性を強調した。
関連論文リスト
- Vid2Sim: Realistic and Interactive Simulation from Video for Urban Navigation [62.5805866419814]
Vid2Simは、ニューラル3Dシーンの再構築とシミュレーションのためのスケーラブルで費用効率のよいReal2simパイプラインを通じてsim2realギャップをブリッジする新しいフレームワークである。
実験により、Vid2Simはデジタル双生児と現実世界の都市ナビゲーションの性能を31.2%、成功率68.3%で大幅に改善することが示された。
論文 参考訳(メタデータ) (2025-01-12T03:01:15Z) - Learning autonomous driving from aerial imagery [67.06858775696453]
フォトグラムシミュレーターは、生成済みの資産を新しいビューに変換することによって、新しいビューを合成することができる。
我々は、ニューラルネットワーク場(NeRF)を中間表現として使用し、地上車両の視点から新しいビューを合成する。
論文 参考訳(メタデータ) (2024-10-18T05:09:07Z) - URDFormer: A Pipeline for Constructing Articulated Simulation Environments from Real-World Images [39.0780707100513]
そこで本研究では,実世界の画像からキネマティック構造と動的構造を合成したシミュレーションシーンを生成するエンドツーエンドパイプラインを提案する。
そこで本研究は,大規模シミュレーション環境のためのパイプラインと,ロバストなロボット制御ポリシをトレーニングするための統合システムの両方を提供する。
論文 参考訳(メタデータ) (2024-05-19T20:01:29Z) - VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splatting System in Virtual Reality [39.53150683721031]
提案するVR-GSシステムは,人間中心の3Dコンテンツインタラクションにおける飛躍的な進歩を示す。
私たちの仮想現実システムのコンポーネントは、高い効率と有効性のために設計されています。
論文 参考訳(メタデータ) (2024-01-30T01:28:36Z) - Reconstructing Objects in-the-wild for Realistic Sensor Simulation [41.55571880832957]
我々は,スパース・イン・ザ・ワイルドデータから正確な幾何学的および現実的な外観を推定する新しい手法であるNeuSimを提案する。
物体の外観を物理にインスパイアされた頑健な反射率表現でモデル化し,実測データに有効である。
実験の結果,NeuSimはスパース・トレーニング・ビューを持つ難解なシナリオに対して,強力なビュー合成性能を有することがわかった。
論文 参考訳(メタデータ) (2023-11-09T18:58:22Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
我々は、オフロード自動運転の視覚的現実的ギャップを横断するRCANを再想像するSim2Segを紹介する。
これは、ランダム化されたシミュレーション画像をシミュレートされたセグメンテーションと深さマップに変換する学習によって行われる。
これにより、シミュレーションでエンドツーエンドのRLポリシーをトレーニングし、現実世界に直接デプロイできます。
論文 参考訳(メタデータ) (2022-10-25T17:50:36Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
我々は人型ロボットの手で頑健な操作を行える政策を訓練する。
本研究は,各種ハードウェアおよびシミュレータのデクスタラス操作におけるsim-to-real転送の可能性を再確認する。
論文 参考訳(メタデータ) (2022-10-25T01:51:36Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
VISTAはオープンソースのデータ駆動シミュレータで、複数のタイプのセンサーを自律走行車に組み込む。
高忠実で実世界のデータセットを使用して、VISTAはRGBカメラ、3D LiDAR、イベントベースのカメラを表現し、シミュレートする。
センサタイプ毎に知覚制御ポリシーをトレーニングし,テストする能力を示し,フルスケールの自律走行車への展開を通じて,このアプローチのパワーを示す。
論文 参考訳(メタデータ) (2021-11-23T18:58:10Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。