論文の概要: FutureVision: A methodology for the investigation of future cognition
- arxiv url: http://arxiv.org/abs/2502.01597v1
- Date: Mon, 03 Feb 2025 18:29:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:00:15.639964
- Title: FutureVision: A methodology for the investigation of future cognition
- Title(参考訳): FutureVision: 未来の認知を調査するための方法論
- Authors: Tiago Timponi Torrent, Mark Turner, Nicolás Hinrichs, Frederico Belcavello, Igor Lourenço, Arthur Lorenzi Almeida, Marcelo Viridiano, Ely Edison Matos,
- Abstract要約: 本研究では,未来シナリオの評価において,視覚的固定パターンがどう変化するかを検討する。
予備的な結果は、遠未来と悲観的なシナリオがより長い固定とより不規則なサケードと関連していることを示している。
- 参考スコア(独自算出の注目度): 0.5644620681963636
- License:
- Abstract: This paper presents a methodology combining multimodal semantic analysis with an eye-tracking experimental protocol to investigate the cognitive effort involved in understanding the communication of future scenarios. To demonstrate the methodology, we conduct a pilot study examining how visual fixation patterns vary during the evaluation of valence and counterfactuality in fictional ad pieces describing futuristic scenarios, using a portable eye tracker. Participants eye movements are recorded while evaluating the stimuli and describing them to a conversation partner. Gaze patterns are analyzed alongside semantic representations of the stimuli and participants descriptions, constructed from a frame semantic annotation of both linguistic and visual modalities. Preliminary results show that far-future and pessimistic scenarios are associated with longer fixations and more erratic saccades, supporting the hypothesis that fractures in the base spaces underlying the interpretation of future scenarios increase cognitive load for comprehenders.
- Abstract(参考訳): 本稿では,マルチモーダルなセマンティック分析と視線追跡実験プロトコルを組み合わせる手法を提案する。
本手法を実証するために, 携帯型アイトラッカーを用いて, 未来的なシナリオを記述した架空の広告作品において, 価値評価において視覚的定着パターンがどう変化するかを, パイロットスタディで検証した。
参加者の眼球運動は、刺激を評価し、会話相手に説明しながら記録される。
ガゼパターンは、言語的・視覚的両方のモダリティのフレーム意味アノテーションから構築された、刺激のセマンティックな表現と参加者の記述とともに分析される。
予備的な結果は、遠未来的シナリオと悲観的シナリオがより長い固定とより不規則なサケードと関連していることを示している。
関連論文リスト
- Visual In-Context Learning for Large Vision-Language Models [62.5507897575317]
大規模視覚言語モデル(LVLM)では、言語間相互作用や表現格差の課題により、ICL(In-Context Learning)の有効性が制限されている。
本稿では,視覚的記述型検索,意図的画像要約,意図的記述型合成を含む新しい視覚的記述型学習(VICL)手法を提案する。
提案手法は'Retrieval & Rerank'パラダイムを用いて画像を検索し,タスク意図とタスク固有の視覚的パーシングで画像を要約し,言語による実演を構成する。
論文 参考訳(メタデータ) (2024-02-18T12:43:38Z) - Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
レコメンデーションシステムは、クリックやレビューのようなユーザとイテムのインタラクションを利用して表現を学習する。
従来の研究では、様々な側面や意図にまたがるユーザの嗜好をモデル化することで、推奨精度と解釈可能性を改善する。
そこで本研究では,意味的側面と認識的相互作用を明らかにするためのチェーンベースのプロンプト手法を提案する。
論文 参考訳(メタデータ) (2023-12-26T15:44:09Z) - Integrating large language models and active inference to understand eye
movements in reading and dyslexia [0.0]
本稿では,階層型能動推論を用いた新しい計算モデルを提案し,視線と視線の動きをシミュレートする。
本モデルでは、失読症などの読取時の眼球運動に対する不適応推論効果の探索を可能にする。
論文 参考訳(メタデータ) (2023-08-09T13:16:30Z) - Inverse Dynamics Pretraining Learns Good Representations for Multitask
Imitation [66.86987509942607]
このようなパラダイムを模倣学習でどのように行うべきかを評価する。
本稿では,事前学習コーパスがマルチタスクのデモンストレーションから成り立つ環境について考察する。
逆動力学モデリングはこの設定に適していると主張する。
論文 参考訳(メタデータ) (2023-05-26T14:40:46Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
既存の視覚・言語モデルと視覚のみのモデルにおける視覚表現の比較分析を行う。
我々の経験的観察は、視覚・言語モデルがラベル予測タスクに優れていることを示唆している。
我々の研究は、視覚学習における言語の役割に光を当て、様々な事前学習モデルの実証的なガイドとして機能することを願っている。
論文 参考訳(メタデータ) (2022-12-01T05:00:18Z) - Towards explainable evaluation of language models on the semantic
similarity of visual concepts [0.0]
本稿では,視覚語彙の意味的類似性に焦点をあて,ハイパフォーマンスな事前学習言語モデルの振る舞いを考察する。
まず、検索したインスタンスの概念的品質を理解するために必要となる、説明可能な評価指標の必要性に対処する。
第二に、健全なクエリセマンティクスに対する敵対的な介入は、不透明なメトリクスの脆弱性を露呈し、学習された言語表現におけるパターンを強調します。
論文 参考訳(メタデータ) (2022-09-08T11:40:57Z) - Learnable Visual Words for Interpretable Image Recognition [70.85686267987744]
モデル予測動作を2つの新しいモジュールで解釈するLearable Visual Words (LVW)を提案する。
意味的な視覚的単語学習は、カテゴリ固有の制約を緩和し、異なるカテゴリ間で共有される一般的な視覚的単語を可能にする。
6つの視覚的ベンチマーク実験により,提案したLVWの精度とモデル解釈における優れた効果が示された。
論文 参考訳(メタデータ) (2022-05-22T03:24:45Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - A Meta-Bayesian Model of Intentional Visual Search [0.0]
本稿では,分類的知覚とササード計画の根底にある神経機構のベイズ的解釈を取り入れたビジュアルサーチの計算モデルを提案する。
擬似行動と人的行動の有意義な比較を可能にするため、参加者は視線に追従する窓から隠蔽されたMNIST桁を分類する必要がある。
本モデルは,観察された人間の行動から主観的パラメータを回収し,高い解釈可能性を維持しながら,分類精度などの人間の行動指標を再カプセル化することができる。
論文 参考訳(メタデータ) (2020-06-05T16:10:35Z) - Analysing Lexical Semantic Change with Contextualised Word
Representations [7.071298726856781]
本稿では,BERTニューラルネットワークモデルを用いて単語使用率の表現を求める手法を提案する。
我々は新しい評価データセットを作成し、モデル表現と検出された意味変化が人間の判断と正に相関していることを示す。
論文 参考訳(メタデータ) (2020-04-29T12:18:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。