Learning to Generate Unit Tests for Automated Debugging
- URL: http://arxiv.org/abs/2502.01619v1
- Date: Mon, 03 Feb 2025 18:51:43 GMT
- Title: Learning to Generate Unit Tests for Automated Debugging
- Authors: Archiki Prasad, Elias Stengel-Eskin, Justin Chih-Yao Chen, Zaid Khan, Mohit Bansal,
- Abstract summary: Unit tests (UTs) play an instrumental role in assessing code correctness as well as providing feedback to a large language model (LLM)
We propose UTGen, which teaches LLMs to generate unit test inputs that reveal errors along with their correct expected outputs.
We show that UTGen outperforms UT generation baselines by 7.59% based on a metric measuring the presence of both error-revealing UT inputs and correct UT outputs.
- Score: 52.63217175637201
- License:
- Abstract: Unit tests (UTs) play an instrumental role in assessing code correctness as well as providing feedback to a large language model (LLM) as it iteratively debugs faulty code, motivating automated test generation. However, we uncover a trade-off between generating unit test inputs that reveal errors when given a faulty code and correctly predicting the unit test output without access to the gold solution. To address this trade-off, we propose UTGen, which teaches LLMs to generate unit test inputs that reveal errors along with their correct expected outputs based on task descriptions and candidate code. We integrate UTGen into UTDebug, a robust debugging pipeline that uses generated tests to help LLMs debug effectively. Since model-generated tests can provide noisy signals (e.g., from incorrectly predicted outputs), UTDebug (i) scales UTGen via test-time compute to improve UT output prediction, and (ii) validates and back-tracks edits based on multiple generated UTs to avoid overfitting. We show that UTGen outperforms UT generation baselines by 7.59% based on a metric measuring the presence of both error-revealing UT inputs and correct UT outputs. When used with UTDebug, we find that feedback from UTGen's unit tests improves pass@1 accuracy of Qwen-2.5 7B on HumanEvalFix and our own harder debugging split of MBPP+ by over 3% and 12.35% (respectively) over other LLM-based UT generation baselines.
Related papers
- TestART: Improving LLM-based Unit Testing via Co-evolution of Automated Generation and Repair Iteration [7.833381226332574]
Large language models (LLMs) have demonstrated remarkable capabilities in generating unit test cases.
We propose TestART, a novel unit test generation method.
TestART improves LLM-based unit testing via co-evolution of automated generation and repair iteration.
arXiv Detail & Related papers (2024-08-06T10:52:41Z) - PROZE: Generating Parameterized Unit Tests Informed by Runtime Data [10.405775369526006]
A parameterized unit test (PUT) receives a set of inputs as arguments and contains assertions that are expected to hold true for all these inputs.
In this paper, we address the problem of finding oracles for PUTs that hold over multiple inputs.
We design a system called PROZE, that generates PUTs by identifying developer-written assertions that are valid for more than one test input.
arXiv Detail & Related papers (2024-06-30T17:07:12Z) - Self-play with Execution Feedback: Improving Instruction-following Capabilities of Large Language Models [54.14602121129874]
We introduce AutoIF, the first scalable and reliable method for automatically generating instruction-following training data.
AutoIF transforms the validation of instruction-following data quality into code verification.
arXiv Detail & Related papers (2024-06-19T13:29:53Z) - LLM-Powered Test Case Generation for Detecting Tricky Bugs [30.82169191775785]
AID generates test inputs and oracles targeting plausibly correct programs.
We evaluate AID on two large-scale datasets with tricky bugs: TrickyBugs and EvalPlus.
The evaluation results show that the recall, precision, and F1 score of AID outperform the state-of-the-art by up to 1.80x, 2.65x, and 1.66x, respectively.
arXiv Detail & Related papers (2024-04-16T06:20:06Z) - Enriching Automatic Test Case Generation by Extracting Relevant Test
Inputs from Bug Reports [8.85274953789614]
name is a technique for exploring bug reports to identify input values that can be fed to automatic test generation tools.
For Defects4J projects, our study has shown that name successfully extracted 68.68% of relevant inputs when using regular expression in its approach.
arXiv Detail & Related papers (2023-12-22T18:19:33Z) - Knowledge-Augmented Language Model Verification [68.6099592486075]
Recent Language Models (LMs) have shown impressive capabilities in generating texts with the knowledge internalized in parameters.
We propose to verify the output and the knowledge of the knowledge-augmented LMs with a separate verifier.
Our results show that the proposed verifier effectively identifies retrieval and generation errors, allowing LMs to provide more factually correct outputs.
arXiv Detail & Related papers (2023-10-19T15:40:00Z) - Prompting Code Interpreter to Write Better Unit Tests on Quixbugs
Functions [0.05657375260432172]
Unit testing is a commonly-used approach in software engineering to test the correctness and robustness of written code.
In this study, we explore the effect of different prompts on the quality of unit tests generated by Code Interpreter.
We find that the quality of the generated unit tests is not sensitive to changes in minor details in the prompts provided.
arXiv Detail & Related papers (2023-09-30T20:36:23Z) - LeTI: Learning to Generate from Textual Interactions [60.425769582343506]
We explore LMs' potential to learn from textual interactions (LETI) that not only check their correctness with binary labels but also pinpoint and explain errors in their outputs through textual feedback.
Our focus is the code generation task, where the model produces code based on natural language instructions.
LETI iteratively fine-tunes the model, using the objective LM, on a concatenation of natural language instructions, LM-generated programs, and textual feedback.
arXiv Detail & Related papers (2023-05-17T15:53:31Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
Large language models (LLMs) have achieved impressive performance on code generation.
We propose Self- Debugging, which teaches a large language model to debug its predicted program via few-shot demonstrations.
arXiv Detail & Related papers (2023-04-11T10:43:43Z) - Self-Supervised Log Parsing [59.04636530383049]
Large-scale software systems generate massive volumes of semi-structured log records.
Existing approaches rely on log-specifics or manual rule extraction.
We propose NuLog that utilizes a self-supervised learning model and formulates the parsing task as masked language modeling.
arXiv Detail & Related papers (2020-03-17T19:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.