論文の概要: Hybrid Group Relative Policy Optimization: A Multi-Sample Approach to Enhancing Policy Optimization
- arxiv url: http://arxiv.org/abs/2502.01652v1
- Date: Thu, 30 Jan 2025 21:04:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:02:55.717314
- Title: Hybrid Group Relative Policy Optimization: A Multi-Sample Approach to Enhancing Policy Optimization
- Title(参考訳): ハイブリッドグループ相対的政策最適化:政策最適化のためのマルチサンプルアプローチ
- Authors: Soham Sane,
- Abstract要約: Hybrid Group Relative Policy Optimization (Hybrid GRPO)は強化学習フレームワークである。
価値関数に基づく学習の安定性を維持しつつ、実証的なマルチサンプル動作評価を取り入れている。
構造化された経験的サンプリングと強化学習安定性機構を統合することで、Hybrid GRPOは自律ロボット工学、金融モデリング、AI駆動制御システムに潜在的に応用できる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Hybrid Group Relative Policy Optimization (Hybrid GRPO) is a reinforcement learning framework that extends Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO) by incorporating empirical multi-sample action evaluation while preserving the stability of value function-based learning. Unlike DeepSeek GRPO, which eliminates the value function in favor of purely empirical reward estimation, Hybrid GRPO introduces a structured advantage computation method that balances empirical action sampling with bootstrapped value estimation. This approach enhances sample efficiency, improves learning stability, and mitigates variance amplification observed in purely empirical methods. A detailed mathematical comparison between PPO, DeepSeek GRPO, and Hybrid GRPO is presented, highlighting key differences in advantage estimation and policy updates. Experimental validation in a controlled reinforcement learning environment demonstrates that Hybrid GRPO achieves superior convergence speed, more stable policy updates, and improved sample efficiency compared to existing methods. Several extensions to Hybrid GRPO are explored, including entropy-regularized sampling, hierarchical multi-step sub-sampling, adaptive reward normalization, and value-based action selection. Beyond reinforcement learning in simulated environments, Hybrid GRPO provides a scalable framework for bridging the gap between large language models (LLMs) and real-world agent-based decision-making. By integrating structured empirical sampling with reinforcement learning stability mechanisms, Hybrid GRPO has potential applications in autonomous robotics, financial modeling, and AI-driven control systems. These findings suggest that Hybrid GRPO serves as a robust and adaptable reinforcement learning methodology, paving the way for further advancements in policy optimization.
- Abstract(参考訳): Hybrid GRPO(Hybrid Group Relative Policy Optimization)は、PPO(Proximal Policy Optimization)とGRPO(Group Relative Policy Optimization)を拡張した強化学習フレームワークである。
純粋に経験的報酬推定に有利な値関数を排除したDeepSeek GRPOとは異なり、Hybrid GRPOは、ブートストラップされた値推定と経験的アクションサンプリングのバランスをとる構造的優位性計算法を導入している。
このアプローチはサンプル効率を高め、学習安定性を改善し、純粋に経験的な方法で観察された分散増幅を緩和する。
PPO、DeepSeek GRPO、およびHybrid GRPOの詳細な数学的比較を示す。
制御された強化学習環境における実験的な検証により,Hybrid GRPOはコンバージェンス速度が向上し,ポリシー更新が安定し,既存の手法と比較してサンプル効率が向上することが示された。
エントロピー規則化サンプリング、階層型マルチステップサブサンプリング、適応報酬正規化、値に基づくアクション選択など、ハイブリッドGRPOへのいくつかの拡張が検討されている。
シミュレーション環境での強化学習以外にも、Hybrid GRPOは、大規模言語モデル(LLM)と実世界のエージェントベースの意思決定のギャップを埋めるためのスケーラブルなフレームワークを提供する。
構造化された経験的サンプリングと強化学習安定性機構を統合することで、Hybrid GRPOは自律ロボット工学、金融モデリング、AI駆動制御システムに潜在的に応用できる。
これらの結果から,Hybrid GRPOはロバストかつ適応可能な強化学習手法として機能し,政策最適化のさらなる進歩の道を開くことが示唆された。
関連論文リスト
- Diffusion Policy Policy Optimization [37.04382170999901]
拡散ポリシー最適化(DPPO)は、拡散ポリシーを微調整するアルゴリズムフレームワークである。
DPOは、一般的なベンチマークの微調整において、最も優れた全体的なパフォーマンスと効率を達成する。
DPPOはRLファインチューニングと拡散パラメタライゼーションのユニークな相乗効果を生かしていることを示す。
論文 参考訳(メタデータ) (2024-09-01T02:47:50Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
生成モデルの時代における最小限のRLアルゴリズムであるREBELを提案する。
理論的には、自然ポリシーグラディエントのような基本的なRLアルゴリズムはREBELの変種と見なすことができる。
我々はREBELが言語モデリングと画像生成に一貫したアプローチを提供し、PPOやDPOとより強くあるいは類似した性能を実現することを発見した。
論文 参考訳(メタデータ) (2024-04-25T17:20:45Z) - Gradient Based Hybridization of PSO [1.1059341532498634]
Particle Swarm Optimization (PSO) は、過去30年間にわたって、強力なメタヒューリスティックなグローバル最適化アプローチとして現れてきた。
PSOは、単一目的シナリオにおける早期の停滞や、探索と搾取のバランスを取る必要性といった課題に直面している。
多様なパラダイムから確立された最適化手法と協調的な性質を統合することでPSOをハイブリダイズすることは、有望な解決策となる。
論文 参考訳(メタデータ) (2023-12-15T11:26:36Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
本稿では,各エージェントのローカルポリシーをバニラPPOと同様に更新するマルチエージェントPPOアルゴリズムを提案する。
マルコフゲームにおける標準正則条件と問題依存量により、我々のアルゴリズムはサブリニアレートで大域的最適ポリシーに収束することを示す。
論文 参考訳(メタデータ) (2023-05-08T16:20:03Z) - Diverse Policy Optimization for Structured Action Space [59.361076277997704]
エネルギーベースモデル(EBM)として構造化された行動空間における政策をモデル化するための多元的政策最適化(DPO)を提案する。
新しい強力な生成モデルであるGFlowNetは、効率よく多様なEMMベースのポリシーサンプリングとして導入されている。
ATSCとBattleベンチマークの実験では、DPOが驚くほど多様なポリシーを効率的に発見できることが示されている。
論文 参考訳(メタデータ) (2023-02-23T10:48:09Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z) - Towards Applicable Reinforcement Learning: Improving the Generalization
and Sample Efficiency with Policy Ensemble [43.95417785185457]
金融取引やロジスティックシステムといった現実世界の応用において、強化学習アルゴリズムが成功することは困難である。
本稿では,エンド・ツー・エンドでアンサンブルポリシーを学習するEnsemble Proximal Policy Optimization (EPPO)を提案する。
EPPOは、バニラポリシー最適化アルゴリズムやその他のアンサンブル手法と比較して、より効率が高く、現実世界のアプリケーションにとって堅牢である。
論文 参考訳(メタデータ) (2022-05-19T02:25:32Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise
Rollouts [52.844741540236285]
マルチエージェント強化学習(MARL)におけるモデルベース手法について検討する。
AORPO(Adaptive Opponent-wise Rollout Policy)と呼ばれる新しい分散型モデルベースのMARL法を提案する。
論文 参考訳(メタデータ) (2021-05-07T16:20:22Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
連立学習パラダイムにおける協調的意思決定のための独立強化学習(IRL)の検討
FLはエージェントとリモート中央サーバ間の過剰な通信オーバーヘッドを生成する。
本稿では,システムの実用性向上のための2つの高度な最適化手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T07:21:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。