論文の概要: Predicting concentration levels of air pollutants by transfer learning and recurrent neural network
- arxiv url: http://arxiv.org/abs/2502.01654v1
- Date: Thu, 30 Jan 2025 23:39:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:04:51.196034
- Title: Predicting concentration levels of air pollutants by transfer learning and recurrent neural network
- Title(参考訳): トランスファーラーニングとリカレントニューラルネットワークによる大気汚染物質の濃度予測
- Authors: Iat Hang Fong, Tengyue Li, Simon Fong, Raymond K. Wong, Antonio J. Tallón-Ballesteros,
- Abstract要約: 長期記憶(LSTM)リカレントニューラルネットワーク(RNN)はマカオにおける大気汚染物質(APS)の今後の濃度を予測するために用いられている。
APS濃度に関する気象データとデータを利用した。
- 参考スコア(独自算出の注目度): 3.6582824166231758
- License:
- Abstract: Air pollution (AP) poses a great threat to human health, and people are paying more attention than ever to its prediction. Accurate prediction of AP helps people to plan for their outdoor activities and aids protecting human health. In this paper, long-short term memory (LSTM) recurrent neural networks (RNNs) have been used to predict the future concentration of air pollutants (APS) in Macau. Additionally, meteorological data and data on the concentration of APS have been utilized. Moreover, in Macau, some air quality monitoring stations (AQMSs) have less observed data in quantity, and, at the same time, some AQMSs recorded less observed data of certain types of APS. Therefore, the transfer learning and pre-trained neural networks have been employed to assist AQMSs with less observed data to build a neural network with high prediction accuracy. The experimental sample covers a period longer than 12-year and includes daily measurements from several APS as well as other more classical meteorological values. Records from five stations, four out of them are AQMSs and the remaining one is an automatic weather station, have been prepared from the aforesaid period and eventually underwent to computational intelligence techniques to build and extract a prediction knowledge-based system. As shown by experimentation, LSTM RNNs initialized with transfer learning methods have higher prediction accuracy; it incurred shorter training time than randomly initialized recurrent neural networks.
- Abstract(参考訳): 大気汚染(AP)は人間の健康に大きな脅威となり、人々は予想以上に多くの注意を払っている。
APの正確な予測は、人々がアウトドア活動の計画を立案し、人間の健康を守るのに役立つ。
本稿では,マカオにおける大気汚染物質(APS)の今後の濃度を予測するために,長期記憶(LSTM)リカレントニューラルネットワーク(RNN)を用いた。
また、APS濃度に関する気象データやデータも活用されている。
さらに、マカオでは、いくつかの大気質監視局(AQMS)は、観測データの量が少なく、同時に、一部のAQMSは、特定の種類のAPSの観測データが少ないことを記録している。
そのため、トランスファーラーニングと事前学習されたニューラルネットワークは、より観測の少ないデータでAQMSを支援し、予測精度の高いニューラルネットワークを構築するために使われてきた。
実験試料は、12年以上の期間をカバーし、いくつかのAPSおよび他の古典的な気象値から毎日の測定を含む。
5駅のうち4駅はAQMSで、残りの1駅は自動気象観測所であり、前述の時代から準備され、最終的には予測知識に基づくシステムを構築し、抽出するための計算知能技術が実施されている。
実験によって示されているように、LSTM RNNは転送学習法で初期化され、予測精度が高く、ランダムに初期化されたリカレントニューラルネットワークよりもトレーニング時間が短い。
関連論文リスト
- Predicting Lung Disease Severity via Image-Based AQI Analysis using Deep Learning Techniques [0.0]
この研究は、PM2.5レベルに加えて、AQI、PM10、O3、CO、SO2、NO2などの大気汚染物質を予測することを目的としている。
本稿では,画像の特徴抽出にVGG16モデル,AQI予測にニューラルネットワークを用いる。
AQI予測のためのニューラルネットワークモデルは、トレーニング精度88.54%、テスト精度87.44%を達成した。
論文 参考訳(メタデータ) (2024-05-07T03:42:49Z) - Value Prediction for Spatiotemporal Gait Data Using Deep Learning [0.19972837513980318]
我々は、時系列時間歩行データの価値予測へのディープラーニングの適用を拡大する。
その結果,短距離予測は 0.060675 以下であり,長距離予測は 0.106365 以下であった。
提案したカスタマイズされたモデルでは,転倒予測,家庭内進捗監視,外骨格運動の支援,認証など,付加的なアプリケーションに対して,価値予測がオープンな可能性を秘めている。
論文 参考訳(メタデータ) (2024-02-29T18:30:13Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Dynamical prediction of two meteorological factors using the deep neural
network and the long short term memory $(1)$ [0.0]
本研究では,既存のニューラルネットワーク法を用いて予測精度を向上させる。
シミュレーション研究は、人工ニューラルネットワーク(ANN)、ディープニューラルネットワーク(DNN)、エクストリームラーニングマシン(ELM)、ロング短期メモリ(LSTM)を適用することによって行われます。
2014年3月から2020年2月までの韓国10都市の低周波時系列からデータを抽出する。
論文 参考訳(メタデータ) (2021-01-16T16:24:24Z) - A Novel Prediction Approach for Exploring PM2.5 Spatiotemporal
Propagation Based on Convolutional Recursive Neural Networks [7.131106953836335]
PM2.5の伝播予測システムは、地域社会への健康影響を減らす早期警戒システムとして、より詳細で正確な情報を提供する。
本研究は,台湾の大気質モニタリングシステムのデータセットを用いて行った。
一般に、測定ノード間の結合を空間的にも時間的にも考慮し、正確な予測結果を提供することができる。
論文 参考訳(メタデータ) (2021-01-15T17:00:04Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。