Addressing Delayed Feedback in Conversion Rate Prediction via Influence Functions
- URL: http://arxiv.org/abs/2502.01669v1
- Date: Sat, 01 Feb 2025 16:23:13 GMT
- Title: Addressing Delayed Feedback in Conversion Rate Prediction via Influence Functions
- Authors: Chenlu Ding, Jiancan Wu, Yancheng Yuan, Junfeng Fang, Cunchun Li, Xiang Wang, Xiangnan He,
- Abstract summary: We propose an Influence Function-empowered framework for Delayed Feedback Modeling (IF-DFM)
IF-DFM leverages influence functions to estimate how newly acquired and delayed conversion data impact model parameters.
Experiments on benchmark datasets demonstrate that IF-DFM consistently surpasses state-of-the-art methods.
- Score: 23.97164200705282
- License:
- Abstract: In the realm of online digital advertising, conversion rate (CVR) prediction plays a pivotal role in maximizing revenue under cost-per-conversion (CPA) models, where advertisers are charged only when users complete specific actions, such as making a purchase. A major challenge in CVR prediction lies in the delayed feedback problem-conversions may occur hours or even weeks after initial user interactions. This delay complicates model training, as recent data may be incomplete, leading to biases and diminished performance. Although existing methods attempt to address this issue, they often fall short in adapting to evolving user behaviors and depend on auxiliary models, which introduces computational inefficiencies and the risk of model inconsistency. In this work, we propose an Influence Function-empowered framework for Delayed Feedback Modeling (IF-DFM). IF-DFM leverages influence functions to estimate how newly acquired and delayed conversion data impact model parameters, enabling efficient parameter updates without the need for full retraining. Additionally, we present a scalable algorithm that efficiently computes parameter updates by reframing the inverse Hessian-vector product as an optimization problem, striking a balance between computational efficiency and effectiveness. Extensive experiments on benchmark datasets demonstrate that IF-DFM consistently surpasses state-of-the-art methods, significantly enhancing both prediction accuracy and model adaptability.
Related papers
- Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - VIRL: Volume-Informed Representation Learning towards Few-shot Manufacturability Estimation [0.0]
This work introduces VIRL, a Volume-Informed Representation Learning approach to pre-train a 3D geometric encoder.
The model pre-trained by VIRL shows substantial enhancements on demonstrating improved generalizability with limited data.
arXiv Detail & Related papers (2024-06-18T05:30:26Z) - Causal Contrastive Learning for Counterfactual Regression Over Time [3.3523758554338734]
This paper introduces a unique approach to counterfactual regression over time, emphasizing long-term predictions.
Distinguishing itself from existing models like Causal Transformer, our approach highlights the efficacy of employing RNNs for long-term forecasting.
Our method achieves state-of-the-art counterfactual estimation results using both synthetic and real-world data.
arXiv Detail & Related papers (2024-06-01T19:07:25Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - DCRMTA: Unbiased Causal Representation for Multi-touch Attribution [0.2417342411475111]
Multi-touch attribution (MTA) currently plays a pivotal role in achieving a fair estimation of the contributions of each advertising to-wards conversion behavior.
Previous works attempted to eliminate the bias caused by user preferences to achieve the unbiased assumption of the conversion model.
This paper re-defines the causal effect of user features on con-versions and proposes a novel end-to-end ap-proach, Deep Causal Representation for MTA.
arXiv Detail & Related papers (2024-01-16T23:16:18Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Generalized Delayed Feedback Model with Post-Click Information in
Recommender Systems [37.72697954740977]
We show that post-click user behaviors are also informative to conversion rate prediction and can be used to improve timeliness.
We propose a generalized delayed feedback model (GDFM) that unifies both post-click behaviors and early conversions as post-click information.
arXiv Detail & Related papers (2022-06-01T11:17:01Z) - FastIF: Scalable Influence Functions for Efficient Model Interpretation
and Debugging [112.19994766375231]
Influence functions approximate the 'influences' of training data-points for test predictions.
We present FastIF, a set of simple modifications to influence functions that significantly improves their run-time.
Our experiments demonstrate the potential of influence functions in model interpretation and correcting model errors.
arXiv Detail & Related papers (2020-12-31T18:02:34Z) - Blending MPC & Value Function Approximation for Efficient Reinforcement
Learning [42.429730406277315]
Model-Predictive Control (MPC) is a powerful tool for controlling complex, real-world systems.
We present a framework for improving on MPC with model-free reinforcement learning (RL)
We show that our approach can obtain performance comparable with MPC with access to true dynamics.
arXiv Detail & Related papers (2020-12-10T11:32:01Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.