Neurosymbolic AI for Travel Demand Prediction: Integrating Decision Tree Rules into Neural Networks
- URL: http://arxiv.org/abs/2502.01680v1
- Date: Sun, 02 Feb 2025 05:10:31 GMT
- Title: Neurosymbolic AI for Travel Demand Prediction: Integrating Decision Tree Rules into Neural Networks
- Authors: Kamal Acharya, Mehul Lad, Liang Sun, Houbing Song,
- Abstract summary: This study introduces a Neurosymbolic Artificial Intelligence (Neurosymbolic AI) framework that integrates decision tree (DT)-based symbolic rules with neural networks (NNs) to predict travel demand.
- Score: 21.445133878049333
- License:
- Abstract: Travel demand prediction is crucial for optimizing transportation planning, resource allocation, and infrastructure development, ensuring efficient mobility and economic sustainability. This study introduces a Neurosymbolic Artificial Intelligence (Neurosymbolic AI) framework that integrates decision tree (DT)-based symbolic rules with neural networks (NNs) to predict travel demand, leveraging the interpretability of symbolic reasoning and the predictive power of neural learning. The framework utilizes data from diverse sources, including geospatial, economic, and mobility datasets, to build a comprehensive feature set. DTs are employed to extract interpretable if-then rules that capture key patterns, which are then incorporated as additional features into a NN to enhance its predictive capabilities. Experimental results show that the combined dataset, enriched with symbolic rules, consistently outperforms standalone datasets across multiple evaluation metrics, including Mean Absolute Error (MAE), \(R^2\), and Common Part of Commuters (CPC). Rules selected at finer variance thresholds (e.g., 0.0001) demonstrate superior effectiveness in capturing nuanced relationships, reducing prediction errors, and aligning with observed commuter patterns. By merging symbolic and neural learning paradigms, this Neurosymbolic approach achieves both interpretability and accuracy.
Related papers
- Statistical tuning of artificial neural network [0.0]
This study introduces methods to enhance the understanding of neural networks, focusing specifically on models with a single hidden layer.
We propose statistical tests to assess the significance of input neurons and introduce algorithms for dimensionality reduction.
This research advances the field of Explainable Artificial Intelligence by presenting robust statistical frameworks for interpreting neural networks.
arXiv Detail & Related papers (2024-09-24T19:47:03Z) - A Neuro-Symbolic Approach to Multi-Agent RL for Interpretability and
Probabilistic Decision Making [42.503612515214044]
Multi-agent reinforcement learning (MARL) is well-suited for runtime decision-making in systems where multiple agents coexist and compete for shared resources.
Applying common deep learning-based MARL solutions to real-world problems suffers from issues of interpretability, sample efficiency, partial observability, etc.
We present an event-driven formulation, where decision-making is handled by distributed co-operative MARL agents using neuro-symbolic methods.
arXiv Detail & Related papers (2024-02-21T00:16:08Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI (NeSy) holds promise to ensure the safe deployment of AI systems.
Existing pipelines that train the neural and symbolic components sequentially require extensive labelling.
New architecture, NeSyGPT, fine-tunes a vision-language foundation model to extract symbolic features from raw data.
arXiv Detail & Related papers (2024-02-02T20:33:14Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Persistence-based operators in machine learning [62.997667081978825]
We introduce a class of persistence-based neural network layers.
Persistence-based layers allow the users to easily inject knowledge about symmetries respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
arXiv Detail & Related papers (2022-12-28T18:03:41Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - SLASH: Embracing Probabilistic Circuits into Neural Answer Set
Programming [15.814914345000574]
We introduce SLASH -- a novel deep probabilistic programming language (DPPL)
At its core, SLASH consists of Neural-Probabilistic Predicates (NPPs) and logical programs which are united via answer set programming.
We evaluate SLASH on the benchmark data of MNIST addition as well as novel tasks for DPPLs such as missing data prediction and set prediction with state-of-the-art performance.
arXiv Detail & Related papers (2021-10-07T12:35:55Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.