BrainOOD: Out-of-distribution Generalizable Brain Network Analysis
- URL: http://arxiv.org/abs/2502.01688v1
- Date: Sun, 02 Feb 2025 14:26:09 GMT
- Title: BrainOOD: Out-of-distribution Generalizable Brain Network Analysis
- Authors: Jiaxing Xu, Yongqiang Chen, Xia Dong, Mengcheng Lan, Tiancheng Huang, Qingtian Bian, James Cheng, Yiping Ke,
- Abstract summary: Graph Neural Networks (GNNs) have shown promising in analyzing brain networks.
BrainOOD is a novel framework tailored for brain networks that enhances GNNs' Out-of-Distribution generalization and interpretability.
Our approach outperforms 16 existing methods and improves generalization to OOD subjects by up to 8.5%.
- Score: 19.986844377608247
- License:
- Abstract: In neuroscience, identifying distinct patterns linked to neurological disorders, such as Alzheimer's and Autism, is critical for early diagnosis and effective intervention. Graph Neural Networks (GNNs) have shown promising in analyzing brain networks, but there are two major challenges in using GNNs: (1) distribution shifts in multi-site brain network data, leading to poor Out-of-Distribution (OOD) generalization, and (2) limited interpretability in identifying key brain regions critical to neurological disorders. Existing graph OOD methods, while effective in other domains, struggle with the unique characteristics of brain networks. To bridge these gaps, we introduce BrainOOD, a novel framework tailored for brain networks that enhances GNNs' OOD generalization and interpretability. BrainOOD framework consists of a feature selector and a structure extractor, which incorporates various auxiliary losses including an improved Graph Information Bottleneck (GIB) objective to recover causal subgraphs. By aligning structure selection across brain networks and filtering noisy features, BrainOOD offers reliable interpretations of critical brain regions. Our approach outperforms 16 existing methods and improves generalization to OOD subjects by up to 8.5%. Case studies highlight the scientific validity of the patterns extracted, which aligns with the findings in known neuroscience literature. We also propose the first OOD brain network benchmark, which provides a foundation for future research in this field. Our code is available at https://github.com/AngusMonroe/BrainOOD.
Related papers
- MindAligner: Explicit Brain Functional Alignment for Cross-Subject Visual Decoding from Limited fMRI Data [64.92867794764247]
MindAligner is a framework for cross-subject brain decoding from limited fMRI data.
Brain Transfer Matrix (BTM) projects the brain signals of an arbitrary new subject to one of the known subjects.
Brain Functional Alignment module is proposed to perform soft cross-subject brain alignment under different visual stimuli.
arXiv Detail & Related papers (2025-02-07T16:01:59Z) - BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
We introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks.
Our framework enables explanatory analyses of crucial brain regions involved in tasks.
arXiv Detail & Related papers (2024-12-23T09:13:35Z) - Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification [15.24676785238373]
We propose Contrasformer, a novel contrastive brain network Transformer.
It generates a prior-knowledge-enhanced contrast graph to address the distribution shifts across sub-populations.
Contrasformer outperforms the state-of-the-art methods for brain networks by achieving up to 10.8% improvement in accuracy.
arXiv Detail & Related papers (2024-09-17T07:26:02Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Adaptive Critical Subgraph Mining for Cognitive Impairment Conversion Prediction with T1-MRI-based Brain Network [4.835051121929712]
Prediction the conversion to early-stage dementia is critical for mitigating its progression.
Traditional T1-weighted magnetic resonance imaging (T1-MRI) research focus on identifying brain atrophy regions.
Brain-SubGNN is a novel graph representation network to mine and enhance critical subgraphs based on T1-MRI.
arXiv Detail & Related papers (2024-03-20T06:46:01Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
Brain diffuser is a diffusion based end-to-end brain network generative model.
It exploits more structural connectivity features and disease-related information by analyzing disparities in structural brain networks across subjects.
For the case of Alzheimer's disease, the proposed model performs better than the results from existing toolkits on the Alzheimer's Disease Neuroimaging Initiative database.
arXiv Detail & Related papers (2023-03-11T14:04:58Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
We propose an interpretable framework to analyze disorder-specific Regions of Interest (ROIs) and prominent connections.
The proposed framework consists of two modules: a brain-network-oriented backbone model for disease prediction and a globally shared explanation generator.
arXiv Detail & Related papers (2022-06-30T08:02:05Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - BrainNNExplainer: An Interpretable Graph Neural Network Framework for
Brain Network based Disease Analysis [23.961196793115786]
Interpretable brain network models for disease prediction are of great value for the advancement of neuroscience.
BrainNNExplainer is an interpretable GNN framework for brain network analysis.
arXiv Detail & Related papers (2021-07-11T17:33:02Z) - Joint Embedding of Structural and Functional Brain Networks with Graph
Neural Networks for Mental Illness Diagnosis [17.48272758284748]
Graph Neural Networks (GNNs) have become a de facto model for analyzing graph-structured data.
We develop a novel multiview GNN for multimodal brain networks.
In particular, we regard each modality as a view for brain networks and employ contrastive learning for multimodal fusion.
arXiv Detail & Related papers (2021-07-07T13:49:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.