BARE: Leveraging Base Language Models for Few-Shot Synthetic Data Generation
- URL: http://arxiv.org/abs/2502.01697v3
- Date: Wed, 21 May 2025 17:50:43 GMT
- Title: BARE: Leveraging Base Language Models for Few-Shot Synthetic Data Generation
- Authors: Alan Zhu, Parth Asawa, Jared Quincy Davis, Lingjiao Chen, Boris Hanin, Ion Stoica, Joseph E. Gonzalez, Matei Zaharia,
- Abstract summary: Current data generation methods rely on seed sets containing tens of thousands of examples to prompt instruction-tuned models.<n>We show that when working with only a few seed examples, instruction-tuned models produce insufficient diversity for downstream tasks.<n>We propose Base-Refine, a novel two-stage method that combines the diversity of base models with the quality assurance of instruction-tuned models.
- Score: 71.46236155101032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the demand for high-quality data in model training grows, researchers and developers are increasingly generating synthetic data to tune and train LLMs. However, current data generation methods rely on seed sets containing tens of thousands of examples to prompt instruction-tuned models. This reliance can be especially problematic when the curation of high-quality examples is expensive or difficult. In this paper we explore the novel few-shot synthetic data generation setting -- generating a high-quality dataset from a few examples. We show that when working with only a few seed examples, instruction-tuned models used in current synthetic data methods produce insufficient diversity for downstream tasks. In contrast, we show that base models without post-training, largely untapped for synthetic data generation, offer substantially greater output diversity, albeit with lower instruction following abilities. Leveraging this insight, we propose Base-Refine (BARE), a novel two-stage method that combines the diversity of base models with the quality assurance of instruction-tuned models. BARE excels in few-shot synthetic data generation: using only 3 seed examples it generates diverse, high-quality datasets that significantly improve downstream task performance. We show that fine-tuning Llama 3.1 8B with 1,000 BARE-generated samples achieves performance comparable to state-of-the-art similarly sized models on LiveCodeBench tasks. Furthermore, data generated with BARE enables a 101% improvement for a fine-tuned Llama 3.2 1B on GSM8K over data generated by only instruction-models, and an 18.4% improvement for a fine-tuned Llama 3.1 8B over the state-of-the-art RAFT method for RAG data generation.
Related papers
- Aug2Search: Enhancing Facebook Marketplace Search with LLM-Generated Synthetic Data Augmentation [11.08205028521878]
Aug2Search is an EBR-based framework leveraging synthetic data generated by Generative AI (GenAI) models.<n>This paper investigates the capabilities of GenAI, particularly Large Language Models (LLMs), in generating high-quality synthetic data.<n>Aug2Search achieves an improvement of up to 4% in ROC_AUC with 100 million synthetic data samples.
arXiv Detail & Related papers (2025-05-21T22:33:40Z) - Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.
Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - AugGen: Synthetic Augmentation Can Improve Discriminative Models [14.680260279598045]
We introduce a novel self-contained synthetic augmentation technique.
It strategically samples from a conditional generative model trained exclusively on the target dataset.
It achieves 1--12% performance improvements on the IJB-C and IJB-B benchmarks.
arXiv Detail & Related papers (2025-03-14T16:10:21Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Little Giants: Synthesizing High-Quality Embedding Data at Scale [71.352883755806]
We introduce SPEED, a framework that aligns open-source small models to efficiently generate large-scale embedding data.
SPEED uses only less than 1/10 of the GPT API calls, outperforming the state-of-the-art embedding model E5_mistral when both are trained solely on their synthetic data.
arXiv Detail & Related papers (2024-10-24T10:47:30Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
Long language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios.
Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement.
We propose the Multi-agent Interactive Multi-hop Generation framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent.
Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human
arXiv Detail & Related papers (2024-09-03T13:30:00Z) - CollectiveSFT: Scaling Large Language Models for Chinese Medical Benchmark with Collective Instructions in Healthcare [12.218718086529462]
This study focuses on the Comprehensive Medical Benchmark in Chinese (CMB)
We successfully trained a smaller base model to achieve scores comparable to larger models.
By integrating a wide range of instructional content, our approach addresses potential issues such as data quality inconsistencies.
arXiv Detail & Related papers (2024-07-29T05:00:48Z) - Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks [66.87070857705994]
In low-resource settings, the amount of seed data samples to use for data augmentation is very small.
We propose a novel method that augments training data by incorporating a wealth of examples from other datasets.
This approach can ensure that the generated data is not only relevant but also more diverse than what could be achieved using the limited seed data alone.
arXiv Detail & Related papers (2024-02-21T02:45:46Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
We introduce a self-evolving mechanism that allows the model itself to actively sample subsets that are equally or even more effective.
The key to our data sampling technique lies in the enhancement of diversity in the chosen subsets.
Extensive experiments across three datasets and benchmarks demonstrate the effectiveness of DiverseEvol.
arXiv Detail & Related papers (2023-11-14T14:10:40Z) - Private Synthetic Data Meets Ensemble Learning [15.425653946755025]
When machine learning models are trained on synthetic data and then deployed on real data, there is often a performance drop.
We introduce a new ensemble strategy for training downstream models, with the goal of enhancing their performance when used on real data.
arXiv Detail & Related papers (2023-10-15T04:24:42Z) - Synthetic Data Generation in Low-Resource Settings via Fine-Tuning of
Large Language Models [15.991777903345575]
Large language models can generalize to novel downstream tasks with relatively few labeled examples.
Alternatively, smaller models can solve specific tasks if fine-tuned with enough labeled examples.
We study synthetic data generation of fine-tuning training data via fine-tuned teacher LLMs to improve the downstream performance of much smaller models.
arXiv Detail & Related papers (2023-10-02T11:49:05Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
We focus on improving the few-shot performance of prompt tuning by transferring knowledge from soft prompts of source tasks.
We propose Sample-specific Ensemble of Source Models (SESoM)
SESoM learns to adjust the contribution of each source model for each target sample separately when ensembling source model outputs.
arXiv Detail & Related papers (2022-10-23T01:33:16Z) - ProGen: Progressive Zero-shot Dataset Generation via In-context Feedback [21.168991554983815]
We propose a progressive zero-shot dataset generation framework, ProGen, to guide the generation of new training data.
We show ProGen achieves on-par or superior performance with only 1% synthetic dataset size.
arXiv Detail & Related papers (2022-10-22T02:07:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.