Aug2Search: Enhancing Facebook Marketplace Search with LLM-Generated Synthetic Data Augmentation
- URL: http://arxiv.org/abs/2505.16065v3
- Date: Tue, 24 Jun 2025 18:46:45 GMT
- Title: Aug2Search: Enhancing Facebook Marketplace Search with LLM-Generated Synthetic Data Augmentation
- Authors: Ruijie Xi, He Ba, Hao Yuan, Rishu Agrawal, Yuxin Tian, Ruoyan Kong, Arul Prakash,
- Abstract summary: Aug2Search is an EBR-based framework leveraging synthetic data generated by Generative AI (GenAI) models.<n>This paper investigates the capabilities of GenAI, particularly Large Language Models (LLMs), in generating high-quality synthetic data.<n>Aug2Search achieves an improvement of up to 4% in ROC_AUC with 100 million synthetic data samples.
- Score: 11.08205028521878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Embedding-Based Retrieval (EBR) is an important technique in modern search engines, enabling semantic match between search queries and relevant results. However, search logging data on platforms like Facebook Marketplace lacks the diversity and details needed for effective EBR model training, limiting the models' ability to capture nuanced search patterns. To address this challenge, we propose Aug2Search, an EBR-based framework leveraging synthetic data generated by Generative AI (GenAI) models, in a multimodal and multitask approach to optimize query-product relevance. This paper investigates the capabilities of GenAI, particularly Large Language Models (LLMs), in generating high-quality synthetic data, and analyzing its impact on enhancing EBR models. We conducted experiments using eight Llama models and 100 million data points from Facebook Marketplace logs. Our synthetic data generation follows three strategies: (1) generate queries, (2) enhance product listings, and (3) generate queries from enhanced listings. We train EBR models on three different datasets: sampled engagement data or original data ((e.g., "Click" and "Listing Interactions")), synthetic data, and a mixture of both engagement and synthetic data to assess their performance across various training sets. Our findings underscore the robustness of Llama models in producing synthetic queries and listings with high coherence, relevance, and diversity, while maintaining low levels of hallucination. Aug2Search achieves an improvement of up to 4% in ROC_AUC with 100 million synthetic data samples, demonstrating the effectiveness of our approach. Moreover, our experiments reveal that with the same volume of training data, models trained exclusively on synthetic data often outperform those trained on original data only or a mixture of original and synthetic data.
Related papers
- Synthline: A Product Line Approach for Synthetic Requirements Engineering Data Generation using Large Language Models [0.5156484100374059]
This paper introduces Synthline, a Product Line (PL) approach that leverages Large Language Models to generate synthetic Requirements Engineering (RE) data.<n>Our analysis reveals that while synthetic datasets exhibit less diversity than real data, they are good enough to serve as viable training resources.<n>Our evaluation shows that combining synthetic and real data leads to substantial performance improvements.
arXiv Detail & Related papers (2025-05-06T07:57:16Z) - Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.<n>Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - BARE: Leveraging Base Language Models for Few-Shot Synthetic Data Generation [71.46236155101032]
Current data generation methods rely on seed sets containing tens of thousands of examples to prompt instruction-tuned models.<n>We show that when working with only a few seed examples, instruction-tuned models produce insufficient diversity for downstream tasks.<n>We propose Base-Refine, a novel two-stage method that combines the diversity of base models with the quality assurance of instruction-tuned models.
arXiv Detail & Related papers (2025-02-03T00:12:40Z) - DreamMask: Boosting Open-vocabulary Panoptic Segmentation with Synthetic Data [61.62554324594797]
We propose DreamMask, which explores how to generate training data in the open-vocabulary setting, and how to train the model with both real and synthetic data.<n>In general, DreamMask significantly simplifies the collection of large-scale training data, serving as a plug-and-play enhancement for existing methods.<n>For instance, when trained on COCO and tested on ADE20K, the model equipped with DreamMask outperforms the previous state-of-the-art by a substantial margin of 2.1% mIoU.
arXiv Detail & Related papers (2025-01-03T19:00:00Z) - Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize Malicious Network Traffic.
Our approach transforms numerical data into text, re-framing data generation as a language modeling task.
Our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data.
arXiv Detail & Related papers (2024-11-04T09:51:10Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Hybrid Training Approaches for LLMs: Leveraging Real and Synthetic Data to Enhance Model Performance in Domain-Specific Applications [0.0]
This research explores a hybrid approach to fine-tuning large language models (LLMs)
By leveraging a dataset combining transcribed real interactions with high-quality synthetic sessions, we aimed to overcome the limitations of domain-specific real data.
The study evaluated three models: a base foundational model, a model fine-tuned with real data, and a hybrid fine-tuned model.
arXiv Detail & Related papers (2024-10-11T18:16:03Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Bridging the Gap: Enhancing the Utility of Synthetic Data via
Post-Processing Techniques [7.967995669387532]
generative models have emerged as a promising solution for generating synthetic datasets that can replace or augment real-world data.
We propose three novel post-processing techniques to improve the quality and diversity of the synthetic dataset.
Experiments show that Gap Filler (GaFi) effectively reduces the gap with real-accuracy scores to an error of 2.03%, 1.78%, and 3.99% on the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, respectively.
arXiv Detail & Related papers (2023-05-17T10:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.