論文の概要: Position: Towards a Responsible LLM-empowered Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2502.01714v1
- Date: Mon, 03 Feb 2025 16:04:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:21:55.542032
- Title: Position: Towards a Responsible LLM-empowered Multi-Agent Systems
- Title(参考訳): 位置:レスポンシブルLLM搭載マルチエージェントシステムに向けて
- Authors: Jinwei Hu, Yi Dong, Shuang Ao, Zhuoyun Li, Boxuan Wang, Lokesh Singh, Guangliang Cheng, Sarvapali D. Ramchurn, Xiaowei Huang,
- Abstract要約: Agent AIとLarge Language Model-powered Multi-Agent Systems (LLM-MAS)の台頭は、責任と信頼性のあるシステム操作の必要性を浮き彫りにした。
LLMエージェントは固有の予測不能を示し、出力の不確実性は複雑になり、システムの安定性を脅かす。
これらのリスクに対処するためには、アクティブな動的モデレーションを備えた人間中心の設計アプローチが不可欠である。
- 参考スコア(独自算出の注目度): 22.905804138387854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of Agent AI and Large Language Model-powered Multi-Agent Systems (LLM-MAS) has underscored the need for responsible and dependable system operation. Tools like LangChain and Retrieval-Augmented Generation have expanded LLM capabilities, enabling deeper integration into MAS through enhanced knowledge retrieval and reasoning. However, these advancements introduce critical challenges: LLM agents exhibit inherent unpredictability, and uncertainties in their outputs can compound across interactions, threatening system stability. To address these risks, a human-centered design approach with active dynamic moderation is essential. Such an approach enhances traditional passive oversight by facilitating coherent inter-agent communication and effective system governance, allowing MAS to achieve desired outcomes more efficiently.
- Abstract(参考訳): Agent AIとLarge Language Model-powered Multi-Agent Systems (LLM-MAS)の台頭は、責任と信頼性のあるシステム操作の必要性を浮き彫りにした。
LangChainやRetrieval-Augmented GenerationといったツールはLLM機能を拡張し、知識検索と推論の強化を通じてMASへのより深い統合を可能にした。
しかし、これらの進歩は重要な課題をもたらす: LLMエージェントは固有の予測不可能を示し、その出力の不確実性は相互作用を複雑にし、システムの安定性を脅かす。
これらのリスクに対処するためには、アクティブな動的モデレーションを備えた人間中心の設計アプローチが不可欠である。
このようなアプローチは、一貫性のあるエージェント間通信と効果的なシステムガバナンスを促進することによって、従来の受動的監視を強化し、MASがより効率的に望ましい結果を達成することを可能にする。
関連論文リスト
- Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
大規模言語モデル(LLM)の最近のブレークスルーは、エージェントAIシステムの出現につながっている。
LLMベースのAgentic RS(LLM-ARS)は、よりインタラクティブで、コンテキストを認識し、プロアクティブなレコメンデーションを提供する。
論文 参考訳(メタデータ) (2025-03-20T22:37:15Z) - Improving Retrospective Language Agents via Joint Policy Gradient Optimization [57.35348425288859]
RetroActは、言語エージェントのタスク計画と自己反射進化機能を共同で最適化するフレームワークである。
模倣学習と強化学習を統合した2段階共同最適化プロセスを開発した。
RetroActはタスクのパフォーマンスと意思決定プロセスを大幅に改善しています。
論文 参考訳(メタデータ) (2025-03-03T12:54:54Z) - LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation [66.52371505566815]
大規模言語モデル(LLM)ベースのAIエージェントは、人間のような知性を達成するために、大きな進歩を遂げた。
LMAgentは,マルチモーダル LLM に基づく大規模かつマルチモーダルなエージェント社会である。
LMAgentでは、友人とチャットする以外に、エージェントは自動で商品を閲覧、購入、レビューしたり、ライブストリーミングのeコマースを行うこともできる。
論文 参考訳(メタデータ) (2024-12-12T12:47:09Z) - A Study on Prompt Injection Attack Against LLM-Integrated Mobile Robotic Systems [4.71242457111104]
大規模言語モデル(LLM)はマルチモーダルプロンプトを処理でき、よりコンテキスト対応の応答を生成することができる。
主な懸念事項の1つは、ロボットナビゲーションタスクでLLMを使用する際の潜在的なセキュリティリスクである。
本研究は,LPM統合システムにおける即時注入が移動ロボットの性能に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2024-08-07T02:48:22Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは進化的アルゴリズムによって専門家エージェントをマルチエージェントシステムに自動的に拡張する汎用的な手法である。
EvoAgentは複数の専門家エージェントを自動生成し,LLMエージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSimは、大規模言語モデル(LLM)における戦略的相互作用と協調的意思決定を研究するために設計された生成シミュレーションプラットフォームである。
最強のLSMエージェントを除く全てのエージェントは、GovSimの持続的均衡を達成することができず、生存率は54%以下である。
道徳的思考の理論である「大学化」に基づく推論を活用するエージェントは、持続可能性を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-04-25T15:59:16Z) - On the Vulnerability of LLM/VLM-Controlled Robotics [54.57914943017522]
大規模言語モデル(LLM)と視覚言語モデル(VLM)を統合するロボットシステムの脆弱性を,入力モダリティの感度によって強調する。
LLM/VLM制御型2つのロボットシステムにおいて,単純な入力摂動がタスク実行の成功率を22.2%,14.6%減少させることを示す。
論文 参考訳(メタデータ) (2024-02-15T22:01:45Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Controlling Large Language Model-based Agents for Large-Scale
Decision-Making: An Actor-Critic Approach [28.477463632107558]
我々はLLaMACと呼ばれるモジュラーフレームワークを開発し、大規模言語モデルにおける幻覚とマルチエージェントシステムにおける協調に対処する。
LLaMACは、人間の脳にあるものに似た値分布をコードし、内部および外部からのフィードバック機構を利用して、モジュール間の協調と反復的推論を促進する。
論文 参考訳(メタデータ) (2023-11-23T10:14:58Z) - Self-Adaptive Large Language Model (LLM)-Based Multiagent Systems [0.0]
本稿では,大規模言語モデル(LLM)をマルチエージェントシステムに統合することを提案する。
我々は、モニタリング、分析、計画、システム適応の実行において堅牢なサポートで有名であるMAPE-Kモデルに、我々の方法論を固定する。
論文 参考訳(メタデータ) (2023-07-12T14:26:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。