Cavity-enhanced solid-state nuclear spin gyroscope
- URL: http://arxiv.org/abs/2502.01769v1
- Date: Mon, 03 Feb 2025 19:23:35 GMT
- Title: Cavity-enhanced solid-state nuclear spin gyroscope
- Authors: Hanfeng Wang, Shuang Wu, Kurt Jacobs, Yuqin Duan, Dirk R. Englund, Matthew E. Trusheim,
- Abstract summary: Nuclear spin sensors are well-suited for applications requiring long coherence times, such as inertial sensing.
We propose cooperative cavity quantum electrodynamic (cQED) coupling to achieve efficient nuclear spin readout.
- Score: 4.817156051848752
- License:
- Abstract: Solid-state quantum sensors based on ensembles of nitrogen-vacancy (NV) centers in diamond have emerged as powerful tools for precise sensing applications. Nuclear spin sensors are particularly well-suited for applications requiring long coherence times, such as inertial sensing, but remain underexplored due to control complexity and limited optical readout efficiency. In this work, we propose cooperative cavity quantum electrodynamic (cQED) coupling to achieve efficient nuclear spin readout. Unlike previous cQED methods used to enhance electron spin readout, here we employ two-field interference in the NV hyperfine subspace to directly probe the nuclear spin transitions. We model the nuclear spin NV-cQED system (nNV-cQED) and observe several distinct regimes, including electromagnetically induced transparency, masing without inversion, and oscillatory behavior. We then evaluate the nNV-cQED system as an inertial sensor, indicating a rotation sensitivity improved by three orders of magnitude compared to previous solid-state spin demonstrations. Furthermore, we show that the NV electron spin can be simultaneously used as a comagnetometer, and the four crystallographic axes of NVs can be employed for vector resolution in a single nNV-cQED system. These results showcase the applications of two-field interference using the nNV-cQED platform, providing critical insights into the manipulation and control of quantum states in hybrid NV systems and unlocking new possibilities for high-performance quantum sensing.
Related papers
- A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)
The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.
We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Simulation of ODMR Spectra from Nitrogen-Vacancy Ensembles in Diamond
for Electric Field Sensing [0.0]
We present an open source simulation tool that models the influence of arbitrary electric and magnetic fields on the electronic and nuclear spin states of NV ensembles.
Specifically, the code computes the transition strengths and predicts the sensitivity under shot-noise-limited optically-detected magnetic resonance.
We show that our code can be used to optimize sensitivity in situations where usual arguments based on neglecting terms in the full Hamiltonian would give sub-optimal results.
arXiv Detail & Related papers (2023-01-10T18:16:12Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum Logic Enhanced Sensing in Solid-State Spin Ensembles [0.0]
We demonstrate quantum logic enhanced sensitivity for a macroscopic ensemble of solid-state, hybrid two-qubit sensors.
We achieve a factor of 30 improvement in signal-to-noise ratio, translating to a sensitivity enhancement exceeding an order of magnitude.
arXiv Detail & Related papers (2022-03-23T15:54:53Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Electrical Control of Coherent Spin Rotation of a Single-Spin Qubit [0.0]
Nitrogen vacancy (NV) centers, optically-active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications.
Here, we report electrical control of the coherent spin rotation rate of a single-spin qubit in NV-magnet based hybrid quantum systems.
arXiv Detail & Related papers (2020-07-15T08:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.