Low Resource Video Super-resolution using Memory and Residual Deformable Convolutions
- URL: http://arxiv.org/abs/2502.01816v1
- Date: Mon, 03 Feb 2025 20:46:15 GMT
- Title: Low Resource Video Super-resolution using Memory and Residual Deformable Convolutions
- Authors: Kavitha Viswanathan, Shashwat Pathak, Piyush Bharambe, Harsh Choudhary, Amit Sethi,
- Abstract summary: Transformer-based video super-resolution (VSR) models have set new benchmarks in recent years, but their substantial computational demands make most of them unsuitable for deployment on resource-constrained devices.<n>We propose a novel lightweight, parameter-efficient deep residual deformable convolution network for VSR.<n>With just 2.3 million parameters, our model achieves state-of-the-art SSIM of 0.9175 on the REDS4 dataset.
- Score: 3.018928786249079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based video super-resolution (VSR) models have set new benchmarks in recent years, but their substantial computational demands make most of them unsuitable for deployment on resource-constrained devices. Achieving a balance between model complexity and output quality remains a formidable challenge in VSR. Although lightweight models have been introduced to address this issue, they often struggle to deliver state-of-the-art performance. We propose a novel lightweight, parameter-efficient deep residual deformable convolution network for VSR. Unlike prior methods, our model enhances feature utilization through residual connections and employs deformable convolution for precise frame alignment, addressing motion dynamics effectively. Furthermore, we introduce a single memory tensor to capture information accrued from the past frames and improve motion estimation across frames. This design enables an efficient balance between computational cost and reconstruction quality. With just 2.3 million parameters, our model achieves state-of-the-art SSIM of 0.9175 on the REDS4 dataset, surpassing existing lightweight and many heavy models in both accuracy and resource efficiency. Architectural insights from our model pave the way for real-time VSR on streaming data.
Related papers
- LIRM: Large Inverse Rendering Model for Progressive Reconstruction of Shape, Materials and View-dependent Radiance Fields [23.174562444342286]
We present Large Inverse Rendering Model (LIRM), a transformer architecture that jointly reconstructs high-quality shape, materials, and radiance fields.
Our model builds upon the recent Large Reconstruction Models (LRMs) that achieve state-of-the-art sparse-view reconstruction quality.
arXiv Detail & Related papers (2025-04-28T17:48:58Z) - Evolving High-Quality Rendering and Reconstruction in a Unified Framework with Contribution-Adaptive Regularization [27.509109317973817]
3D Gaussian Splatting (3DGS) has garnered significant attention for its high-quality rendering and fast inference speed.
Previous methods primarily focus on geometry regularization, with common approaches including primitive-based and dual-model frameworks.
We propose CarGS, a unified model leveraging-adaptive regularization to achieve simultaneous, high-quality surface reconstruction.
arXiv Detail & Related papers (2025-03-02T12:51:38Z) - M-VAR: Decoupled Scale-wise Autoregressive Modeling for High-Quality Image Generation [39.97174784206976]
We show that this scale-wise autoregressive framework can be effectively decoupled into textitintra-scale modeling
We apply linear-complexity mechanisms like Mamba to substantially reduce computational overhead.
Experiments demonstrate that our method outperforms existing models in both image quality and generation speed.
arXiv Detail & Related papers (2024-11-15T18:54:42Z) - ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation [83.62931466231898]
This paper presents ARLON, a framework that boosts diffusion Transformers with autoregressive models for long video generation.
A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens.
An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model.
arXiv Detail & Related papers (2024-10-27T16:28:28Z) - Arbitrary-Scale Video Super-Resolution with Structural and Textural Priors [80.92195378575671]
We describe a strong baseline for Arbitra-scale super-resolution (AVSR)
We then introduce ST-AVSR by equipping our baseline with a multi-scale structural and textural prior computed from the pre-trained VGG network.
Comprehensive experiments show that ST-AVSR significantly improves super-resolution quality, generalization ability, and inference speed over the state-of-theart.
arXiv Detail & Related papers (2024-07-13T15:27:39Z) - InstantSplat: Sparse-view Gaussian Splatting in Seconds [91.77050739918037]
We introduce InstantSplat, a novel approach for addressing sparse-view 3D scene reconstruction at lightning-fast speed.
InstantSplat employs a self-supervised framework that optimize 3D scene representation and camera poses.
It achieves an acceleration of over 30x in reconstruction and improves visual quality (SSIM) from 0.3755 to 0.7624 compared to traditional SfM with 3D-GS.
arXiv Detail & Related papers (2024-03-29T17:29:58Z) - Leveraging Neural Radiance Field in Descriptor Synthesis for Keypoints Scene Coordinate Regression [1.2974519529978974]
This paper introduces a pipeline for keypoint descriptor synthesis using Neural Radiance Field (NeRF)
generating novel poses and feeding them into a trained NeRF model to create new views, our approach enhances the KSCR's capabilities in data-scarce environments.
The proposed system could significantly improve localization accuracy by up to 50% and cost only a fraction of time for data synthesis.
arXiv Detail & Related papers (2024-03-15T13:40:37Z) - RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks [93.18404922542702]
We present a novel video generative model designed to address long-term spatial and temporal dependencies.
Our approach incorporates a hybrid explicit-implicit tri-plane representation inspired by 3D-aware generative frameworks.
Our model synthesizes high-fidelity video clips at a resolution of $256times256$ pixels, with durations extending to more than $5$ seconds at a frame rate of 30 fps.
arXiv Detail & Related papers (2024-01-11T16:48:44Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - Can SAM Boost Video Super-Resolution? [78.29033914169025]
We propose a simple yet effective module -- SAM-guidEd refinEment Module (SEEM)
This light-weight plug-in module is specifically designed to leverage the attention mechanism for the generation of semantic-aware feature.
We apply our SEEM to two representative methods, EDVR and BasicVSR, resulting in consistently improved performance with minimal implementation effort.
arXiv Detail & Related papers (2023-05-11T02:02:53Z) - VolRecon: Volume Rendering of Signed Ray Distance Functions for
Generalizable Multi-View Reconstruction [64.09702079593372]
VolRecon is a novel generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF)
On DTU dataset, VolRecon outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable accuracy as MVSNet in full view reconstruction.
arXiv Detail & Related papers (2022-12-15T18:59:54Z) - Sliding Window Recurrent Network for Efficient Video Super-Resolution [0.0]
Video super-resolution (VSR) is the task of restoring high-resolution frames from a sequence of low-resolution inputs.
We propose a textitSliding Window based Recurrent Network (SWRN) which can be real-time inference while still achieving superior performance.
Our experiment on REDS dataset shows that the proposed method can be well adapted to mobile devices and produce visually pleasant results.
arXiv Detail & Related papers (2022-08-24T15:23:44Z) - STIP: A SpatioTemporal Information-Preserving and Perception-Augmented
Model for High-Resolution Video Prediction [78.129039340528]
We propose a Stemporal Information-Preserving and Perception-Augmented Model (STIP) to solve the above two problems.
The proposed model aims to preserve thetemporal information for videos during the feature extraction and the state transitions.
Experimental results show that the proposed STIP can predict videos with more satisfactory visual quality compared with a variety of state-of-the-art methods.
arXiv Detail & Related papers (2022-06-09T09:49:04Z) - STDAN: Deformable Attention Network for Space-Time Video
Super-Resolution [39.18399652834573]
We propose a deformable attention network called STDAN for STVSR.
First, we devise a long-short term feature (LSTFI) module, which is capable of abundant content from more neighboring input frames.
Second, we put forward a spatial-temporal deformable feature aggregation (STDFA) module, in which spatial and temporal contexts are adaptively captured and aggregated.
arXiv Detail & Related papers (2022-03-14T03:40:35Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.