Score as Action: Fine-Tuning Diffusion Generative Models by Continuous-time Reinforcement Learning
- URL: http://arxiv.org/abs/2502.01819v1
- Date: Mon, 03 Feb 2025 20:50:05 GMT
- Title: Score as Action: Fine-Tuning Diffusion Generative Models by Continuous-time Reinforcement Learning
- Authors: Hanyang Zhao, Haoxian Chen, Ji Zhang, David D. Yao, Wenpin Tang,
- Abstract summary: Reinforcement learning from human feedback (RLHF) has become a crucial step in building reliable generative AI models.
This study is to develop a disciplined approach to fine-tune diffusion models using continuous-time RL.
- Score: 9.025671446527694
- License:
- Abstract: Reinforcement learning from human feedback (RLHF), which aligns a diffusion model with input prompt, has become a crucial step in building reliable generative AI models. Most works in this area use a discrete-time formulation, which is prone to induced errors, and often not applicable to models with higher-order/black-box solvers. The objective of this study is to develop a disciplined approach to fine-tune diffusion models using continuous-time RL, formulated as a stochastic control problem with a reward function that aligns the end result (terminal state) with input prompt. The key idea is to treat score matching as controls or actions, and thereby making connections to policy optimization and regularization in continuous-time RL. To carry out this idea, we lay out a new policy optimization framework for continuous-time RL, and illustrate its potential in enhancing the value networks design space via leveraging the structural property of diffusion models. We validate the advantages of our method by experiments in downstream tasks of fine-tuning large-scale Text2Image models of Stable Diffusion v1.5.
Related papers
- Stochastic Control for Fine-tuning Diffusion Models: Optimality, Regularity, and Convergence [11.400431211239958]
Diffusion models have emerged as powerful tools for generative modeling.
We propose a control framework for fine-tuning diffusion models.
We show that PI-FT achieves global convergence at a linear rate.
arXiv Detail & Related papers (2024-12-24T04:55:46Z) - Avoiding mode collapse in diffusion models fine-tuned with reinforcement learning [0.0]
Fine-tuning foundation models via reinforcement learning (RL) has proven promising for aligning to downstream objectives.
We exploit the hierarchical nature of diffusion models (DMs) and train them dynamically at each epoch with a tailored RL method.
We show that models trained with HRF achieve better preservation of diversity in downstream tasks, thus enhancing the fine-tuning robustness and at uncompromising mean rewards.
arXiv Detail & Related papers (2024-10-10T19:06:23Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Scores as Actions: a framework of fine-tuning diffusion models by continuous-time reinforcement learning [9.025671446527694]
Reinforcement Learning from human feedback (RLHF) has been shown a promising direction for aligning generative models with human intent.
We formulate the task of fine-tuning diffusion models, with reward functions learned from human feedback, as an exploratory continuous-time control problem.
We develop the corresponding continuous-time RL theory for policy optimization and regularization under assumptions of different equations.
arXiv Detail & Related papers (2024-09-12T21:12:21Z) - Reward-Directed Score-Based Diffusion Models via q-Learning [8.725446812770791]
We propose a new reinforcement learning (RL) formulation for training continuous-time score-based diffusion models for generative AI.
Our formulation does not involve any pretrained model for the unknown score functions of the noise-perturbed data distributions.
arXiv Detail & Related papers (2024-09-07T13:55:45Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - Adding Conditional Control to Diffusion Models with Reinforcement Learning [68.06591097066811]
Diffusion models are powerful generative models that allow for precise control over the characteristics of the generated samples.
While these diffusion models trained on large datasets have achieved success, there is often a need to introduce additional controls in downstream fine-tuning processes.
This work presents a novel method based on reinforcement learning (RL) to add such controls using an offline dataset.
arXiv Detail & Related papers (2024-06-17T22:00:26Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models.
They rely on sequential denoising steps during sample generation.
We propose a novel method that integrates denoising phases directly into the model's architecture.
arXiv Detail & Related papers (2024-05-31T08:19:44Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
We study the continuous-time dynamics induced by GAN training.
From this perspective, we hypothesise that instabilities in training GANs arise from the integration error.
We experimentally verify that well-known ODE solvers (such as Runge-Kutta) can stabilise training.
arXiv Detail & Related papers (2020-10-28T15:23:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.