Avoiding mode collapse in diffusion models fine-tuned with reinforcement learning
- URL: http://arxiv.org/abs/2410.08315v1
- Date: Thu, 10 Oct 2024 19:06:23 GMT
- Title: Avoiding mode collapse in diffusion models fine-tuned with reinforcement learning
- Authors: Roberto Barceló, Cristóbal Alcázar, Felipe Tobar,
- Abstract summary: Fine-tuning foundation models via reinforcement learning (RL) has proven promising for aligning to downstream objectives.
We exploit the hierarchical nature of diffusion models (DMs) and train them dynamically at each epoch with a tailored RL method.
We show that models trained with HRF achieve better preservation of diversity in downstream tasks, thus enhancing the fine-tuning robustness and at uncompromising mean rewards.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning foundation models via reinforcement learning (RL) has proven promising for aligning to downstream objectives. In the case of diffusion models (DMs), though RL training improves alignment from early timesteps, critical issues such as training instability and mode collapse arise. We address these drawbacks by exploiting the hierarchical nature of DMs: we train them dynamically at each epoch with a tailored RL method, allowing for continual evaluation and step-by-step refinement of the model performance (or alignment). Furthermore, we find that not every denoising step needs to be fine-tuned to align DMs to downstream tasks. Consequently, in addition to clipping, we regularise model parameters at distinct learning phases via a sliding-window approach. Our approach, termed Hierarchical Reward Fine-tuning (HRF), is validated on the Denoising Diffusion Policy Optimisation method, where we show that models trained with HRF achieve better preservation of diversity in downstream tasks, thus enhancing the fine-tuning robustness and at uncompromising mean rewards.
Related papers
- Scores as Actions: a framework of fine-tuning diffusion models by continuous-time reinforcement learning [9.025671446527694]
Reinforcement Learning from human feedback (RLHF) has been shown a promising direction for aligning generative models with human intent.
We formulate the task of fine-tuning diffusion models, with reward functions learned from human feedback, as an exploratory continuous-time control problem.
We develop the corresponding continuous-time RL theory for policy optimization and regularization under assumptions of different equations.
arXiv Detail & Related papers (2024-09-12T21:12:21Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Not All Steps are Equal: Efficient Generation with Progressive Diffusion
Models [62.155612146799314]
We propose a novel two-stage training strategy termed Step-Adaptive Training.
In the initial stage, a base denoising model is trained to encompass all timesteps.
We partition the timesteps into distinct groups, fine-tuning the model within each group to achieve specialized denoising capabilities.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) is a compact network that incorporates an additional simple yet effective step during inference.
OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters.
Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
arXiv Detail & Related papers (2023-11-27T12:02:42Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align)
Our method aims to bolster the model's generalizability by preserving the consistency of spurious features.
Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements.
arXiv Detail & Related papers (2023-10-23T17:12:01Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - Restoration based Generative Models [0.886014926770622]
Denoising diffusion models (DDMs) have attracted increasing attention by showing impressive synthesis quality.
In this paper, we establish the interpretation of DDMs in terms of image restoration (IR)
We propose a multi-scale training, which improves the performance compared to the diffusion process, by taking advantage of the flexibility of the forward process.
We believe that our framework paves the way for designing a new type of flexible general generative model.
arXiv Detail & Related papers (2023-02-20T00:53:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.