Efficient Denial of Service Attack Detection in IoT using Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2502.01835v1
- Date: Mon, 03 Feb 2025 21:19:46 GMT
- Title: Efficient Denial of Service Attack Detection in IoT using Kolmogorov-Arnold Networks
- Authors: Oleksandr Kuznetsov,
- Abstract summary: This paper introduces a novel lightweight approach to DoS attack detection based on Kolmogorov-Arnold Networks (KANs)
KAN achieves state-of-the-art detection performance while maintaining minimal resource requirements.
Compared to existing solutions, KAN reduces memory requirements by up to 98% while maintaining competitive detection rates.
- Score: 22.036794530902608
- License:
- Abstract: The proliferation of Internet of Things (IoT) devices has created a pressing need for efficient security solutions, particularly against Denial of Service (DoS) attacks. While existing detection approaches demonstrate high accuracy, they often require substantial computational resources, making them impractical for IoT deployment. This paper introduces a novel lightweight approach to DoS attack detection based on Kolmogorov-Arnold Networks (KANs). By leveraging spline-based transformations instead of traditional weight matrices, our solution achieves state-of-the-art detection performance while maintaining minimal resource requirements. Experimental evaluation on the CICIDS2017 dataset demonstrates 99.0% detection accuracy with only 0.19 MB memory footprint and 2.00 ms inference time per sample. Compared to existing solutions, KAN reduces memory requirements by up to 98% while maintaining competitive detection rates. The model's linear computational complexity ensures efficient scaling with input size, making it particularly suitable for large-scale IoT deployments. We provide comprehensive performance comparisons with recent approaches and demonstrate effectiveness across various DoS attack patterns. Our solution addresses the critical challenge of implementing sophisticated attack detection on resource-constrained devices, offering a practical approach to enhancing IoT security without compromising computational efficiency.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Efficient Intrusion Detection: Combining $χ^2$ Feature Selection with CNN-BiLSTM on the UNSW-NB15 Dataset [2.239394800147746]
Intrusion Detection Systems (IDSs) have played a significant role in the detection and prevention of cyber-attacks in traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices pose a challenge for deploying conventional computing-based IDSs.
We present an effective IDS model that addresses this issue by combining a lightweight Convolutional Neural Network (CNN) with bidirectional Long Short-Term Memory (BiLSTM)
arXiv Detail & Related papers (2024-07-20T17:41:16Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
Our proposed model consists on a combination of convolutional neural network (CNN) and long short-term memory (LSTM) deep learning (DL) models.
This fusion facilitates the detection and classification of IoT traffic into binary categories, benign and malicious activities.
Our proposed model achieves an accuracy rate of 98.42%, accompanied by a minimal loss of 0.0275.
arXiv Detail & Related papers (2024-05-28T22:12:15Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Deep Learning-based Embedded Intrusion Detection System for Automotive
CAN [12.084121187559864]
Various intrusion detection approaches have been proposed to detect and tackle such threats, with machine learning models proving highly effective.
We propose a hybrid FPGA-based ECU approach that can transparently integrate IDS functionality through a dedicated off-the-shelf hardware accelerator.
Our results show that the proposed approach provides an average accuracy of over 99% across multiple attack datasets with 0.64% false detection rates.
arXiv Detail & Related papers (2024-01-19T13:13:38Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - ARLIF-IDS -- Attention augmented Real-Time Isolation Forest Intrusion
Detection System [0.0]
Internet of Things and Software Defined Networking leverage lightweight strategies for the early detection of DDoS attacks.
It is essential to have a fast and effective security identification model based on low number of features.
In this work, a novel Attention-based Isolation Forest Intrusion Detection System is proposed.
arXiv Detail & Related papers (2022-04-20T18:40:23Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Detecting Botnet Attacks in IoT Environments: An Optimized Machine
Learning Approach [8.641714871787595]
Machine learning (ML) has emerged as one potential solution due to the abundance of data generated and available for IoT devices and networks.
This paper proposes an optimized ML-based framework to detect attacks on IoT devices in an effective and efficient manner.
Experimental results show that the proposed optimized framework has a high detection accuracy, precision, recall, and F-score.
arXiv Detail & Related papers (2020-12-16T16:39:55Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.