Latent Lexical Projection in Large Language Models: A Novel Approach to Implicit Representation Refinement
- URL: http://arxiv.org/abs/2502.01882v1
- Date: Mon, 03 Feb 2025 23:18:53 GMT
- Title: Latent Lexical Projection in Large Language Models: A Novel Approach to Implicit Representation Refinement
- Authors: Ziad Shaker, Brendan Ashdown, Hugo Fitzalan, Alistair Heathcote, Jocasta Huntington,
- Abstract summary: Latent Lexical Projection (LLP) is introduced to refine lexical representations through a structured transformation into a latent space.
LLP integrates an optimized projection mechanism within an existing language model architecture.
Evaluations indicate a reduction in perplexity and an increase in BLEU scores, suggesting improvements in predictive accuracy and fluency.
- Score: 0.0
- License:
- Abstract: Generating semantically coherent text requires a robust internal representation of linguistic structures, which traditional embedding techniques often fail to capture adequately. A novel approach, Latent Lexical Projection (LLP), is introduced to refine lexical representations through a structured transformation into a latent space, thereby enhancing the alignment between input embeddings and their contextual meanings. The method integrates an optimized projection mechanism within an existing language model architecture, enabling more accurate token selection while maintaining syntactic integrity. Evaluations across multiple benchmarks indicate a reduction in perplexity and an increase in BLEU scores, suggesting improvements in predictive accuracy and fluency. The analysis of lexical diversity reveals a more varied vocabulary in generated text, addressing common issues of redundancy and repetitive phrase structures. Further assessments of entropy distributions demonstrate a decline in uncertainty during decoding, reflecting enhanced confidence in word selection. Additionally, long-range dependency retention exhibits measurable gains, with increased classification accuracy at extended token distances. Computational efficiency remains within manageable constraints, despite the added projection mechanism, highlighting the practicality of LLP for integration into existing architectures.
Related papers
- Probabilistic Lexical Manifold Construction in Large Language Models via Hierarchical Vector Field Interpolation [0.0]
The proposed methodology constructs a probabilistic function space where word representations adhere to topological consistency.
Probability constraints enhance lexical coherence by refining contextual relationships, leading to improvements in semantic stability across multiple linguistic distributions.
An assessment of computational efficiency reveals that while representations introduces minor processing overhead, the structured representation learning approach remains scalable for practical deployment.
arXiv Detail & Related papers (2025-02-14T08:47:10Z) - Statistical Coherence Alignment for Large Language Model Representation Learning Through Tensor Field Convergence [0.0]
Representation learning plays a central role in structuring internal embeddings to capture statistical properties of language.
Coherence alignment is introduced as a method to enforce structured token representations through tensor field convergence.
Empirical evaluations demonstrate that applying coherence constraints improves perplexity, enhances classification accuracy, and refines rare word embeddings.
arXiv Detail & Related papers (2025-02-13T23:24:25Z) - Lexical Manifold Reconfiguration in Large Language Models: A Novel Architectural Approach for Contextual Modulation [0.0]
A structured approach was developed for dynamically reconfiguring token embeddings through continuous geometric transformations.
A manifold-based transformation mechanism was integrated to regulate lexical positioning, allowing embeddings to undergo controlled shifts.
Empirical evaluations demonstrated that embedding reconfiguration contributed to reductions in perplexity, improved lexical coherence, and enhanced sentence-level continuity.
arXiv Detail & Related papers (2025-02-12T22:11:07Z) - Hierarchical Lexical Manifold Projection in Large Language Models: A Novel Mechanism for Multi-Scale Semantic Representation [0.0]
The integration of structured hierarchical embeddings into transformer-based architectures introduces a refined approach to lexical representation.
A projection mechanism that maps tokens onto a structured manifold provides improved lexical alignment.
The refined hierarchical organization of embeddings provides greater interpretability in lexical modeling.
arXiv Detail & Related papers (2025-02-08T00:49:32Z) - Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models [7.798982346197703]
The organization of latent token representations plays a crucial role in determining the stability, generalization, and contextual consistency of language models.
A hierarchical alignment method was introduced to token embeddings without altering core model weights.
Experimental evaluations demonstrated improvements in rare token retrieval, adversarial, and long-range dependency tracking.
arXiv Detail & Related papers (2025-02-06T04:01:27Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
We propose a novel latent-variable formulation for constructing intrinsic probes.
We find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
arXiv Detail & Related papers (2022-01-20T15:01:12Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - Obtaining Better Static Word Embeddings Using Contextual Embedding
Models [53.86080627007695]
Our proposed distillation method is a simple extension of CBOW-based training.
As a side-effect, our approach also allows a fair comparison of both contextual and static embeddings.
arXiv Detail & Related papers (2021-06-08T12:59:32Z) - Morphologically Aware Word-Level Translation [82.59379608647147]
We propose a novel morphologically aware probability model for bilingual lexicon induction.
Our model exploits the basic linguistic intuition that the lexeme is the key lexical unit of meaning.
arXiv Detail & Related papers (2020-11-15T17:54:49Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.