論文の概要: Generalizable and Fast Surrogates: Model Predictive Control of Articulated Soft Robots using Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2502.01916v1
- Date: Tue, 04 Feb 2025 01:16:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:53:21.276973
- Title: Generalizable and Fast Surrogates: Model Predictive Control of Articulated Soft Robots using Physics-Informed Neural Networks
- Title(参考訳): 一般化可能な高速サロゲート:物理インフォームドニューラルネットワークを用いた人工ソフトロボットのモデル予測制御
- Authors: Tim-Lukas Habich, Aran Mohammad, Simon F. G. Ehlers, Martin Bensch, Thomas Seel, Moritz Schappler,
- Abstract要約: 本研究では,データ効率を重視した音声ソフトロボット(ASR)のための物理インフォームドニューラルネットワーク(PINN)を提案する。
高価な実世界のトレーニングデータの量は、ひとつのシステムドメインに1つのデータセットとして最小限に削減されます。
PINNでは、精度の低いFPモデルの予測速度を最大466倍に向上させる。
- 参考スコア(独自算出の注目度): 4.146337610044239
- License:
- Abstract: Soft robots can revolutionize several applications with high demands on dexterity and safety. When operating these systems, real-time estimation and control require fast and accurate models. However, prediction with first-principles (FP) models is slow, and learned black-box models have poor generalizability. Physics-informed machine learning offers excellent advantages here, but it is currently limited to simple, often simulated systems without considering changes after training. We propose physics-informed neural networks (PINNs) for articulated soft robots (ASRs) with a focus on data efficiency. The amount of expensive real-world training data is reduced to a minimum - one dataset in one system domain. Two hours of data in different domains are used for a comparison against two gold-standard approaches: In contrast to a recurrent neural network, the PINN provides a high generalizability. The prediction speed of an accurate FP model is improved with the PINN by up to a factor of 466 at slightly reduced accuracy. This enables nonlinear model predictive control (MPC) of the pneumatic ASR. In nine dynamic MPC experiments, an average joint-tracking error of 1.3{\deg} is achieved.
- Abstract(参考訳): ソフトロボットは、ディクスタリティと安全性に対する高い要求で、いくつかのアプリケーションに革命を起こすことができる。
これらのシステムを操作する場合、リアルタイム推定と制御は高速で正確なモデルを必要とする。
しかし、第一原理(FP)モデルによる予測は遅く、学習されたブラックボックスモデルは一般化性に乏しい。
物理インフォームド機械学習は、ここでは優れた利点があるが、現在は訓練後の変化を考慮せずに、単純な、しばしばシミュレートされたシステムに限られている。
本研究では,データ効率を重視した音声ソフトロボット(ASR)のための物理インフォームドニューラルネットワーク(PINN)を提案する。
高価な実世界のトレーニングデータの量は、ひとつのシステムドメインに1つのデータセットとして最小限に削減されます。
異なるドメイン内の2時間のデータは、2つのゴールドスタンダードのアプローチと比較するために使用される。
PINNでは、精度の低いFPモデルの予測速度を最大466倍に向上させる。
これにより空気圧ASRの非線形モデル予測制御(MPC)が可能となる。
9つの動的MPC実験では、平均1.3{\degの関節追跡誤差が達成される。
関連論文リスト
- Domain-decoupled Physics-informed Neural Networks with Closed-form Gradients for Fast Model Learning of Dynamical Systems [2.8730926763860687]
物理インフォームドニューラルネットワーク(PINN)は、物理方程式を用いて訓練され、データから学習することで、モデル化されていない効果を組み込むことができる。
本稿では、大規模で複雑な非線形力学系を扱う場合のPINCの現在の限界に対処するために、ドメイン分離された物理情報ニューラルネットワーク(DD-PINN)を導入する。
論文 参考訳(メタデータ) (2024-08-27T10:54:51Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AIベースのアプリケーションは、スケジューリングや電力制御などの機能を実行するために、インテリジェントコントローラにデプロイされる。
コンテキストとAIモデルのパラメータのマッピングは、ゼロショット方式で理想的に行われる。
本稿では,AMSマッピングのオンライン最適化のための一般的な手法を紹介する。
論文 参考訳(メタデータ) (2024-06-22T11:17:50Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
ほとんどの機械学習(ML)システムは、トレーニングとデプロイメントの間、定常的で一致したデータ分散を前提としている。
データ分布は、環境要因、センサー特性、タスク・オブ・関心などの変化により、時間とともに変化することが多い。
本稿では,ドメインシフト下での効率的な連続学習のためのアダプタ・リコンフィグレータ(EAR)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T23:55:17Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network [6.309365332210523]
本稿では、単純なODEとデータの一部をトレーニングしたニューラルネットワークを用いて、PINN(RAMP-Net)を介してロバスト適応MPCフレームワークを提案する。
我々は,SOTA回帰に基づく2つのMPC法と比較して,0.5~1.75m/sの追跡誤差を7.8%から43.2%,8.04%から61.5%削減した。
論文 参考訳(メタデータ) (2022-09-19T16:11:51Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
モデル予測制御パイプライン内の動的モデルとして,大規模で複雑なニューラルネットワークアーキテクチャを効率的に統合するフレームワークであるReal-time Neural MPCを提案する。
ニューラルネットワークを使わずに、最先端のMPCアプローチと比較して、位置追跡誤差を最大82%削減することで、実世界の問題に対する我々のフレームワークの実現可能性を示す。
論文 参考訳(メタデータ) (2022-03-15T09:38:15Z) - Physics-informed Neural Networks-based Model Predictive Control for
Multi-link Manipulators [0.0]
物理インフォームド機械学習手法を用いて,多体ダイナミクスに対する非線形モデル予測制御(NMPC)について論じる。
本稿では,ネットワーク入力として制御動作と初期条件を付加することでPINNの強化を提案する。
PINNベースのMPCを用いて,複雑な機械システムにおける追跡問題の解法を提案する。
論文 参考訳(メタデータ) (2021-09-22T15:31:24Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
本研究では,有限体積シミュレータを用いて,高精度な深層学習に基づくプロキシモデルを効率的に教えることができることを示す。
従来のシミュレーションと比較して、提案したディープラーニングアプローチはより高速なフォワード計算を可能にする。
深層学習モデルの重要物理パラメータに対する感度を定量化することにより、インバージョン問題を大きな加速で解くことができることを示す。
論文 参考訳(メタデータ) (2020-06-09T17:14:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。