VolleyBots: A Testbed for Multi-Drone Volleyball Game Combining Motion Control and Strategic Play
- URL: http://arxiv.org/abs/2502.01932v3
- Date: Sat, 17 May 2025 11:20:39 GMT
- Title: VolleyBots: A Testbed for Multi-Drone Volleyball Game Combining Motion Control and Strategic Play
- Authors: Zelai Xu, Ruize Zhang, Chao Yu, Huining Yuan, Xiangmin Yi, Shilong Ji, Chuqi Wang, Wenhao Tang, Feng Gao, Wenbo Ding, Xinlei Chen, Yu Wang,
- Abstract summary: We present VolleyBots, a novel robot sports testbed where multiple drones cooperate and compete in the sport of volleyball under physical dynamics.<n>VolleyBots integrates three features within a unified platform: competitive and cooperative gameplay, turn-based interaction structure, and agile 3D maneuvering.
- Score: 26.51145484716405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robot sports, characterized by well-defined objectives, explicit rules, and dynamic interactions, present ideal scenarios for demonstrating embodied intelligence. In this paper, we present VolleyBots, a novel robot sports testbed where multiple drones cooperate and compete in the sport of volleyball under physical dynamics. VolleyBots integrates three features within a unified platform: competitive and cooperative gameplay, turn-based interaction structure, and agile 3D maneuvering. Competitive and cooperative gameplay challenges each drone to coordinate with its teammates while anticipating and countering opposing teams' tactics. Turn-based interaction demands precise timing, accurate state prediction, and management of long-horizon temporal dependencies. Agile 3D maneuvering requires rapid accelerations, sharp turns, and precise 3D positioning despite the quadrotor's underactuated dynamics. These intertwined features yield a complex problem combining motion control and strategic play, with no available expert demonstrations. We provide a comprehensive suite of tasks ranging from single-drone drills to multi-drone cooperative and competitive tasks, accompanied by baseline evaluations of representative multi-agent reinforcement learning (MARL) and game-theoretic algorithms. Simulation results show that on-policy reinforcement learning (RL) methods outperform off-policy methods in single-agent tasks, but both approaches struggle in complex tasks that combine motion control and strategic play. We additionally design a hierarchical policy which achieves a 69.5% percent win rate against the strongest baseline in the 3 vs 3 task, underscoring its potential as an effective solution for tackling the complex interplay between low-level control and high-level strategy. The project page is at https://sites.google.com/view/thu-volleybots.
Related papers
- Toward Real-World Cooperative and Competitive Soccer with Quadrupedal Robot Teams [25.885025521590414]
We present a hierarchical multi-agent reinforcement learning (MARL) framework that enables fully autonomous and decentralized quadruped robot soccer.<n>First, a set of highly dynamic low-level skills is trained for legged locomotion and ball manipulation, such as walking, dribbling, and kicking.<n>On top of these, a high-level strategic planning policy is trained with Multi-Agent Proximal Policy Optimization (MAPPO) via Fictitious Self-Play.
arXiv Detail & Related papers (2025-05-20T02:20:54Z) - Mastering Multi-Drone Volleyball through Hierarchical Co-Self-Play Reinforcement Learning [13.062481157503495]
We tackle the problem of learning to play 3v3 multi-drone volleyball.<n>The task requires both high-level strategic coordination and low-level agile control.<n>We propose Hierarchical Co-Self-Play, a hierarchical reinforcement learning framework.
arXiv Detail & Related papers (2025-05-07T11:04:36Z) - Multi-Robot Collaboration through Reinforcement Learning and Abstract Simulation [3.5253513747455303]
We investigate the extent to which so-called abstract simulators can be used for multi-agent reinforcement learning.
An abstract simulator models the robot's target task at a high-level of abstraction and discards many details of the world that could impact optimal decision-making.
Policies are trained in an abstract simulator then transferred to the physical robot by making use of separately-obtained low-level perception and motion control modules.
arXiv Detail & Related papers (2025-03-07T02:23:24Z) - A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
We organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference.
We focus on practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data.
Results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging.
arXiv Detail & Related papers (2024-11-08T17:20:47Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Robot Air Hockey: A Manipulation Testbed for Robot Learning with Reinforcement Learning [34.055177769808914]
We introduce a dynamic, interactive RL testbed based on robot air hockey.
Our testbed allows a varied assessment of RL capabilities.
The robot air hockey testbed also supports sim-to-real transfer with three domains.
arXiv Detail & Related papers (2024-05-06T02:13:08Z) - Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning [17.906144781244336]
We train end-to-end robot soccer policies with fully onboard computation and sensing via egocentric RGB vision.
This paper constitutes a first demonstration of end-to-end training for multi-agent robot soccer.
arXiv Detail & Related papers (2024-05-03T18:41:13Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - Evolving Multi-Objective Neural Network Controllers for Robot Swarms [0.0]
This research proposes a multi-objective evolutionary neural network approach to developing controllers for swarms of robots.
The swarm robot controllers are trained in a low-fidelity Python simulator and then tested in a high-fidelity simulated environment using Webots.
arXiv Detail & Related papers (2023-07-26T15:05:17Z) - HomeRobot: Open-Vocabulary Mobile Manipulation [107.05702777141178]
Open-Vocabulary Mobile Manipulation (OVMM) is the problem of picking any object in any unseen environment, and placing it in a commanded location.
HomeRobot has two components: a simulation component, which uses a large and diverse curated object set in new, high-quality multi-room home environments; and a real-world component, providing a software stack for the low-cost Hello Robot Stretch.
arXiv Detail & Related papers (2023-06-20T14:30:32Z) - Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning [26.13655448415553]
Deep Reinforcement Learning (Deep RL) is able to synthesize sophisticated and safe movement skills for a low-cost, miniature humanoid robot.
We used Deep RL to train a humanoid robot with 20 actuated joints to play a simplified one-versus-one (1v1) soccer game.
The resulting agent exhibits robust and dynamic movement skills such as rapid fall recovery, walking, turning, kicking and more.
arXiv Detail & Related papers (2023-04-26T16:25:54Z) - Robust and Versatile Bipedal Jumping Control through Reinforcement
Learning [141.56016556936865]
This work aims to push the limits of agility for bipedal robots by enabling a torque-controlled bipedal robot to perform robust and versatile dynamic jumps in the real world.
We present a reinforcement learning framework for training a robot to accomplish a large variety of jumping tasks, such as jumping to different locations and directions.
We develop a new policy structure that encodes the robot's long-term input/output (I/O) history while also providing direct access to a short-term I/O history.
arXiv Detail & Related papers (2023-02-19T01:06:09Z) - DIAMBRA Arena: a New Reinforcement Learning Platform for Research and
Experimentation [91.3755431537592]
This work presents DIAMBRA Arena, a new platform for reinforcement learning research and experimentation.
It features a collection of high-quality environments exposing a Python API fully compliant with OpenAI Gym standard.
They are episodic tasks with discrete actions and observations composed by raw pixels plus additional numerical values.
arXiv Detail & Related papers (2022-10-19T14:39:10Z) - Creating a Dynamic Quadrupedal Robotic Goalkeeper with Reinforcement
Learning [18.873152528330063]
We present a reinforcement learning (RL) framework that enables quadrupedal robots to perform soccer goalkeeping tasks in the real world.
Soccer goalkeeping using quadrupeds is a challenging problem, that combines highly dynamic locomotion with precise and fast non-prehensile object (ball) manipulation.
We deploy the proposed framework on a Mini Cheetah quadrupedal robot and demonstrate the effectiveness of our framework for various agile interceptions of a fast-moving ball in the real world.
arXiv Detail & Related papers (2022-10-10T04:54:55Z) - A Deep Reinforcement Learning Strategy for UAV Autonomous Landing on a
Platform [0.0]
We proposed a reinforcement learning framework based on Gazebo that is a kind of physical simulation platform (ROS-RL)
We used three continuous action space reinforcement learning algorithms in the framework to dealing with the problem of autonomous landing of drones.
arXiv Detail & Related papers (2022-09-07T06:33:57Z) - Hierarchical Reinforcement Learning for Precise Soccer Shooting Skills
using a Quadrupedal Robot [76.04391023228081]
We address the problem of enabling quadrupedal robots to perform precise shooting skills in the real world using reinforcement learning.
We propose a hierarchical framework that leverages deep reinforcement learning to train a robust motion control policy.
We deploy the proposed framework on an A1 quadrupedal robot and enable it to accurately shoot the ball to random targets in the real world.
arXiv Detail & Related papers (2022-08-01T22:34:51Z) - From Motor Control to Team Play in Simulated Humanoid Football [56.86144022071756]
We train teams of physically simulated humanoid avatars to play football in a realistic virtual environment.
In a sequence of stages, players first learn to control a fully articulated body to perform realistic, human-like movements.
They then acquire mid-level football skills such as dribbling and shooting.
Finally, they develop awareness of others and play as a team, bridging the gap between low-level motor control at a timescale of milliseconds.
arXiv Detail & Related papers (2021-05-25T20:17:10Z) - Coach-Player Multi-Agent Reinforcement Learning for Dynamic Team
Composition [88.26752130107259]
In real-world multiagent systems, agents with different capabilities may join or leave without altering the team's overarching goals.
We propose COPA, a coach-player framework to tackle this problem.
We 1) adopt the attention mechanism for both the coach and the players; 2) propose a variational objective to regularize learning; and 3) design an adaptive communication method to let the coach decide when to communicate with the players.
arXiv Detail & Related papers (2021-05-18T17:27:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.