Toward a Low-Cost Perception System in Autonomous Vehicles: A Spectrum Learning Approach
- URL: http://arxiv.org/abs/2502.01940v1
- Date: Tue, 04 Feb 2025 02:20:52 GMT
- Title: Toward a Low-Cost Perception System in Autonomous Vehicles: A Spectrum Learning Approach
- Authors: Mohammed Alsakabi, Aidan Erickson, John M. Dolan, Ozan K. Tonguz,
- Abstract summary: We introduce a novel pixel positional encoding algorithm inspired by Bartlett's spatial spectrum estimation technique.
Our method effectively leverages high-resolution camera images to train radar depth map generative models.
Our results demonstrate that our approach also outperforms the state-of-the-art (SOTA) by 27.95% in terms of Unidirectional Chamfer Distance (UCD)
- Score: 19.23732332126651
- License:
- Abstract: We present a cost-effective new approach for generating denser depth maps for Autonomous Driving (AD) and Autonomous Vehicles (AVs) by integrating the images obtained from deep neural network (DNN) 4D radar detectors with conventional camera RGB images. Our approach introduces a novel pixel positional encoding algorithm inspired by Bartlett's spatial spectrum estimation technique. This algorithm transforms both radar depth maps and RGB images into a unified pixel image subspace called the Spatial Spectrum, facilitating effective learning based on their similarities and differences. Our method effectively leverages high-resolution camera images to train radar depth map generative models, addressing the limitations of conventional radar detectors in complex vehicular environments, thus sharpening the radar output. We develop spectrum estimation algorithms tailored for radar depth maps and RGB images, a comprehensive training framework for data-driven generative models, and a camera-radar deployment scheme for AV operation. Our results demonstrate that our approach also outperforms the state-of-the-art (SOTA) by 27.95% in terms of Unidirectional Chamfer Distance (UCD).
Related papers
- A Resource Efficient Fusion Network for Object Detection in Bird's-Eye View using Camera and Raw Radar Data [7.2508100569856975]
We use the raw range-Doppler spectrum of radar data to process camera images.
We extract the corresponding features with our camera encoder-decoder architecture.
The resultant feature maps are fused with Range-Azimuth features, recovered from the RD spectrum input to perform object detection.
arXiv Detail & Related papers (2024-11-20T13:26:13Z) - Redefining Automotive Radar Imaging: A Domain-Informed 1D Deep Learning Approach for High-Resolution and Efficient Performance [6.784861785632841]
Our study redefines radar imaging super-resolution as a one-dimensional (1D) signal super-resolution spectra estimation problem.
Our tailored deep learning network for automotive radar imaging exhibits remarkable scalability, parameter efficiency and fast inference speed.
Our SR-SPECNet sets a new benchmark in producing high-resolution radar range-azimuth images.
arXiv Detail & Related papers (2024-06-11T16:07:08Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - DART: Implicit Doppler Tomography for Radar Novel View Synthesis [9.26298115522881]
DART is a Neural Radiance Field-inspired method which uses radar-specific physics to create a reflectance and transmittance-based rendering pipeline for range-Doppler images.
In comparison to state-of-the-art baselines, DART synthesizes superior radar range-Doppler images from novel views across all datasets.
arXiv Detail & Related papers (2024-03-06T17:54:50Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - Deep Radar Inverse Sensor Models for Dynamic Occupancy Grid Maps [0.0]
We propose a deep learning-based Inverse Sensor Model (ISM) to learn the mapping from sparse radar detections to polar measurement grids.
Our approach is the first one to learn a single-frame measurement grid in the polar scheme from radars with a limited Field Of View.
This enables us to flexibly use one or more radar sensors without network retraining and without requirements on 360deg sensor coverage.
arXiv Detail & Related papers (2023-05-21T09:09:23Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
This paper describes how advanced deep learning based computer vision algorithms are applied to enable real-time on-board sensor processing for small UAVs.
All algorithms have been developed using state-of-the-art image processing methods based on deep neural networks.
arXiv Detail & Related papers (2022-11-02T11:10:42Z) - Toward Data-Driven STAP Radar [23.333816677794115]
We characterize our data-driven approach to space-time adaptive processing (STAP) radar.
We generate a rich example dataset of received radar signals by randomly placing targets of variable strengths in a predetermined region.
For each data sample within this region, we generate heatmap tensors in range, azimuth, and elevation of the output power of a beamformer.
In an airborne scenario, the moving radar creates a sequence of these time-indexed image stacks, resembling a video.
arXiv Detail & Related papers (2022-01-26T02:28:13Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.