論文の概要: Mitigating Object Hallucinations in Large Vision-Language Models via Attention Calibration
- arxiv url: http://arxiv.org/abs/2502.01969v1
- Date: Tue, 04 Feb 2025 03:27:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:03:21.576164
- Title: Mitigating Object Hallucinations in Large Vision-Language Models via Attention Calibration
- Title(参考訳): 注意校正による視覚・言語モデルにおける物体の幻覚の緩和
- Authors: Younan Zhu, Linwei Tao, Minjing Dong, Chang Xu,
- Abstract要約: LVLM(Large Vision-Language Models)は、視覚的コンテンツと実際に一致しない応答を生成する。
我々は、単一の意味のない入力画像からバイアスを推定する、トレーニング不要なソリューションUniform Attention (UAC)を導入する。
また、画像中のオブジェクトがどこにあっても一貫した出力を強制する、微調整ソリューションであるDynamic Attention (DAC)を導入します。
- 参考スコア(独自算出の注目度): 22.39558434131574
- License:
- Abstract: Large Vision-Language Models (LVLMs) exhibit impressive multimodal reasoning capabilities but remain highly susceptible to object hallucination, where models generate responses that are not factually aligned with the visual content. Recent works attribute this issue to an inherent bias of LVLMs where vision token attention map has a fixed correlation with spatial position, and propose to mitigate this issue by reordering visual tokens. However, we find that different LVLMs exhibit different correlations between attention and spatial position, which makes the existing solution difficult to generalize to other LVLMs. To address this issue, we first introduce a training-free solution, Uniform Attention Calibration (UAC), that estimates the bias from single meaningless input image and applies a calibration matrix to rectify attention imbalances. To further alleviate the bias, we relax the assumption of single meaningless input in UAC and introduce a fine-tuning solution, Dynamic Attention Calibration (DAC), that enforces the consistent outputs wherever the object locates in the image via a plug-and-plays module. Comprehensive experiments across multiple benchmarks demonstrate that UAC and DAC significantly reduce object hallucination while improving general multimodal alignment. Our methods achieve state-of-the-art performance across diverse LVLM architectures on various metrics.
- Abstract(参考訳): LVLM(Large Vision-Language Models)は、印象的なマルチモーダル推論能力を示すが、オブジェクト幻覚の影響を受けやすい。
最近の研究は、視覚トークンアテンションマップが空間的位置と一定の相関を持つLVLMの固有のバイアスによるものと考えられており、視覚トークンを並べ替えることでこの問題を軽減することを提案する。
しかし、異なるLVLMは注意と空間的位置の間に異なる相関関係を示し、既存のLVLMを他のLVLMに一般化することは困難である。
この問題に対処するために,まず,単一無意味な入力画像からバイアスを推定し,注意不均衡を正すために校正行列を適用する,トレーニング不要なソリューションであるUniform Attention Calibration(UAC)を導入する。
さらにバイアスを軽減するため、UACにおける単一無意味な入力の仮定を緩和し、プラグイン・アンド・プレイング・モジュールを介して、オブジェクトが画像中に位置するような一貫した出力を強制する、微調整ソリューションである動的注意補正(DAC)を導入する。
複数のベンチマークの総合的な実験により、UACとDACは一般的なマルチモーダルアライメントを改善しながら、物体の幻覚を著しく減少させることが示された。
提案手法は,多種多様なLVLMアーキテクチャ上での最先端性能を実現する。
関連論文リスト
- Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance [67.26434607115392]
大規模視覚言語モデル(LVLM)は様々な視覚言語タスクにおいて印象的な成果を上げている。
LVLMは言語バイアスによる幻覚に悩まされ、画像や非効果的な視覚的理解に焦点が当てられなくなった。
MDA (Multimodal duAl-attention meChanIsm) aNd soft-image Guidance (IFG) を用いたLVLMの言語バイアスに対処するためのLACingを提案する。
論文 参考訳(メタデータ) (2024-11-21T16:33:30Z) - Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment [57.0121616203175]
本研究では,視覚言語アライメントを改善するための細粒度検証器として,モデル自身のビジュアルエンコーダを利用する新たな自己アライメント手法であるFiSAOを提案する。
ビジョンエンコーダからのトークンレベルのフィードバックを活用することで、FiSAOは視覚言語アライメントを大幅に改善する。
論文 参考訳(メタデータ) (2024-10-18T03:34:32Z) - MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation [50.73561815838431]
MLLM(Multimodal Large Language Models)はしばしば幻覚現象を示す。
MLLM(DeCo)の新しい動的補正復号法を提案する。
広範に使用されているベンチマークでDeCoを評価し、ベースラインと比較して幻覚率を大きなマージンで削減できることを実証した。
論文 参考訳(メタデータ) (2024-10-15T16:57:44Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - From Redundancy to Relevance: Information Flow in LVLMs Across Reasoning Tasks [33.476693301050275]
我々は,視覚的質問応答と画像キャプションタスクのために,様々なLVLMの切り抜き戦略を用いて実験を行った。
視覚的表現の貢献の観点から情報の流れを探索することにより、浅い層に収束する傾向にあるが、より深い層に分散する傾向があることを観察する。
論文 参考訳(メタデータ) (2024-06-04T13:52:54Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
本稿では,LVLM推論における幻覚の低減を目的とした,命令コントラストデコーディング(ICD)手法を提案する。
本手法は,マルチモーダル核融合モジュールにおいて,外乱指示が幻覚を著しく悪化させるという観察に着想を得たものである。
論文 参考訳(メタデータ) (2024-03-27T16:04:47Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning [67.0609518552321]
本稿では,視覚モデルからノイズ予測を補正するマシンビジョンセラピーを提案する。
復調ラベルを微調整することにより、教師なしの方法で学習モデルの性能を高めることができる。
論文 参考訳(メタデータ) (2023-12-05T07:29:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。