ReMiDi: Reconstruction of Microstructure Using a Differentiable Diffusion MRI Simulator
- URL: http://arxiv.org/abs/2502.01988v1
- Date: Tue, 04 Feb 2025 04:03:08 GMT
- Title: ReMiDi: Reconstruction of Microstructure Using a Differentiable Diffusion MRI Simulator
- Authors: Prathamesh Pradeep Khole, Zahra Kais Petiwala, Shri Prathaa Magesh, Ehsan Mirafzali, Utkarsh Gupta, Jing-Rebecca Li, Andrada Ianus, Razvan Marinescu,
- Abstract summary: ReMiDi is a novel method for inferring neuronal microstructure as arbitrary 3D meshes using a differentiable diffusion Magnetic Resonance Imaging (dMRI) simulator.
We present an end-to-end differentiable pipeline that simulates signals that can be tuned to match a reference signal.
We demonstrate the ability to reconstruct microstructures of arbitrary shapes represented by finite-element meshes, with a focus on axonal geometries found in the brain white matter.
- Score: 0.602276990341246
- License:
- Abstract: We propose ReMiDi, a novel method for inferring neuronal microstructure as arbitrary 3D meshes using a differentiable diffusion Magnetic Resonance Imaging (dMRI) simulator. We first implemented in PyTorch a differentiable dMRI simulator that simulates the forward diffusion process using a finite-element method on an input 3D microstructure mesh. To achieve significantly faster simulations, we solve the differential equation semi-analytically using a matrix formalism approach. Given a reference dMRI signal $S_{ref}$, we use the differentiable simulator to iteratively update the input mesh such that it matches $S_{ref}$ using gradient-based learning. Since directly optimizing the 3D coordinates of the vertices is challenging, particularly due to ill-posedness of the inverse problem, we instead optimize a lower-dimensional latent space representation of the mesh. The mesh is first encoded into spectral coefficients, which are further encoded into a latent $\textbf{z}$ using an auto-encoder, and are then decoded back into the true mesh. We present an end-to-end differentiable pipeline that simulates signals that can be tuned to match a reference signal by iteratively updating the latent representation $\textbf{z}$. We demonstrate the ability to reconstruct microstructures of arbitrary shapes represented by finite-element meshes, with a focus on axonal geometries found in the brain white matter, including bending, fanning and beading fibers. Our source code will be made available online.
Related papers
- EM-GANSim: Real-time and Accurate EM Simulation Using Conditional GANs for 3D Indoor Scenes [55.2480439325792]
We present a novel machine-learning (ML) approach (EM-GANSim) for real-time electromagnetic (EM) propagation.
In practice, it can compute the signal strength in a few milliseconds on any location in 3D indoor environments.
arXiv Detail & Related papers (2024-05-27T17:19:02Z) - PolyDiff: Generating 3D Polygonal Meshes with Diffusion Models [15.846449180313778]
PolyDiff is the first diffusion-based approach capable of directly generating realistic and diverse 3D polygonal meshes.
Our model is capable of producing high-quality 3D polygonal meshes, ready for integration into downstream 3D.
arXiv Detail & Related papers (2023-12-18T18:19:26Z) - Neural Spherical Harmonics for structurally coherent continuous
representation of diffusion MRI signal [0.3277163122167433]
We present a novel way to model diffusion magnetic resonance imaging (dMRI) datasets, that benefits from the structural coherence of the human brain.
Current methods model the dMRI signal in individual voxels, disregarding the intervoxel coherence that is present.
We use a neural network to parameterize a spherical harmonics series to represent the dMRI signal of a single subject from the Human Connectome Project dataset.
arXiv Detail & Related papers (2023-08-16T08:28:01Z) - Angular Super-Resolution in Diffusion MRI with a 3D Recurrent
Convolutional Autoencoder [0.0]
High resolution diffusion MRI (dMRI) data is often constrained by limited scanning time in clinical settings.
We develop a 3D recurrent convolutional neural network capable of super-resolving dMRI volumes in the angular domain.
arXiv Detail & Related papers (2022-03-29T14:08:30Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTet is a conditional generative model that can synthesize high-resolution 3D shapes using simple user guides such as coarse voxels.
Unlike deep 3D generative models that directly generate explicit representations such as meshes, our model can synthesize shapes with arbitrary topology.
arXiv Detail & Related papers (2021-11-08T05:29:35Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme.
We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations.
arXiv Detail & Related papers (2021-02-16T04:07:13Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
3D shape representations that accommodate learning-based 3D reconstruction are an open problem in machine learning and computer graphics.
Previous work on neural 3D reconstruction demonstrated benefits, but also limitations, of point cloud, voxel, surface mesh, and implicit function representations.
We introduce Deformable Tetrahedral Meshes (DefTet) as a particular parameterization that utilizes volumetric tetrahedral meshes for the reconstruction problem.
arXiv Detail & Related papers (2020-11-03T02:57:01Z) - Neural Mesh Flow: 3D Manifold Mesh Generation via Diffeomorphic Flows [79.39092757515395]
We propose Neural Mesh Flow (NMF) to generate two-manifold meshes for genus-0 shapes.
NMF is a shape auto-encoder consisting of several Neural Ordinary Differential Equation (NODE) blocks that learn accurate mesh geometry by progressively deforming a spherical mesh.
Our experiments demonstrate that NMF facilitates several applications such as single-view mesh reconstruction, global shape parameterization, texture mapping, shape deformation and correspondence.
arXiv Detail & Related papers (2020-07-21T17:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.