Reasoning Bias of Next Token Prediction Training
- URL: http://arxiv.org/abs/2502.02007v2
- Date: Thu, 20 Feb 2025 03:38:38 GMT
- Title: Reasoning Bias of Next Token Prediction Training
- Authors: Pengxiao Lin, Zhongwang Zhang, Zhi-Qin John Xu,
- Abstract summary: Next token prediction (NTP) is the dominant training paradigm for Large Language Models (LLMs)
We show that despite NTP's exposure to noise during training, it surpasses in reasoning ability.
We attribute this counterintuitive outcome to the regularizing influence of noise on the training dynamics.
- Score: 5.188841610098436
- License:
- Abstract: Since the inception of Large Language Models (LLMs), the quest to efficiently train them for superior reasoning capabilities has been a pivotal challenge. The dominant training paradigm for LLMs is based on next token prediction (NTP). Alternative methodologies, called Critical Token Prediction (CTP), focused exclusively on specific critical tokens (such as the answer in Q\&A dataset), aiming to reduce the overfitting of extraneous information and noise. Contrary to initial assumptions, our research reveals that despite NTP's exposure to noise during training, it surpasses CTP in reasoning ability. We attribute this counterintuitive outcome to the regularizing influence of noise on the training dynamics. Our empirical analysis shows that NTP-trained models exhibit enhanced generalization and robustness across various benchmark reasoning datasets, demonstrating greater resilience to perturbations and achieving flatter loss minima. These findings illuminate that NTP is instrumental in fostering reasoning abilities during pretraining, whereas CTP is more effective for finetuning, thereby enriching our comprehension of optimal training strategies in LLM development.
Related papers
- On multi-token prediction for efficient LLM inference [0.36681882674260474]
We first show that such models inherently possess MTP capabilities via numerical marginalization over intermediate token probabilities.
We then explore the challenges of integrating MTP heads into frozen LLMs and find that their hidden layers are strongly specialized for NTP.
arXiv Detail & Related papers (2025-02-13T15:42:44Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness.
We show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses.
arXiv Detail & Related papers (2024-10-21T17:00:06Z) - HiDe-PET: Continual Learning via Hierarchical Decomposition of Parameter-Efficient Tuning [55.88910947643436]
We propose a unified framework for continual learning (CL) with pre-trained models (PTMs) and parameter-efficient tuning (PET)
We present Hierarchical Decomposition PET (HiDe-PET), an innovative approach that explicitly optimize the objective through incorporating task-specific and task-shared knowledge.
Our approach demonstrates remarkably superior performance over a broad spectrum of recent strong baselines.
arXiv Detail & Related papers (2024-07-07T01:50:25Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
We propose a framework to learn planning-based reasoning through Direct Preference Optimization (DPO) on collected trajectories.
Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework.
arXiv Detail & Related papers (2024-02-01T15:18:33Z) - Hierarchical Decomposition of Prompt-Based Continual Learning:
Rethinking Obscured Sub-optimality [55.88910947643436]
Self-supervised pre-training is essential for handling vast quantities of unlabeled data in practice.
HiDe-Prompt is an innovative approach that explicitly optimize the hierarchical components with an ensemble of task-specific prompts and statistics.
Our experiments demonstrate the superior performance of HiDe-Prompt and its robustness to pre-training paradigms in continual learning.
arXiv Detail & Related papers (2023-10-11T06:51:46Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - Don't Stop Pretraining? Make Prompt-based Fine-tuning Powerful Learner [14.975436239088312]
We re-visit the notion in NLP that continued pre-training improves the performance of fine-tuning (FT) in downstream tasks.
We propose Prompt-based Continued Pre-training (PCP), which combines the idea of instruction tuning with conventional continued pre-training.
Our empirical evaluations on 21 benchmarks demonstrate that the PCP consistently improves the performance of state-of-the-art prompt-based FT approaches.
arXiv Detail & Related papers (2023-05-02T18:25:30Z) - CARE: Certifiably Robust Learning with Reasoning via Variational
Inference [26.210129662748862]
We propose a certifiably robust learning with reasoning pipeline (CARE)
CARE achieves significantly higher certified robustness compared with the state-of-the-art baselines.
We additionally conducted different ablation studies to demonstrate the empirical robustness of CARE and the effectiveness of different knowledge integration.
arXiv Detail & Related papers (2022-09-12T07:15:52Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
Large-scale pre-trained models (PTMs) have recently achieved great success and become a milestone in the field of artificial intelligence (AI)
By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks.
It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch.
arXiv Detail & Related papers (2021-06-14T02:40:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.