An Active Inference perspective on Neurofeedback Training
- URL: http://arxiv.org/abs/2505.03308v1
- Date: Tue, 06 May 2025 08:41:31 GMT
- Title: An Active Inference perspective on Neurofeedback Training
- Authors: Côme Annicchiarico, Fabien Lotte, Jérémie Mattout,
- Abstract summary: Neurofeedback training (NFT) aims to teach self-regulation of brain activity through real-time feedback.<n>NFT suffers from highly variable outcomes and poorly understood mechanisms, hampering its validation.<n>We propose a formal computational model of the NFT closed loop.
- Score: 0.6008132390640294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neurofeedback training (NFT) aims to teach self-regulation of brain activity through real-time feedback, but suffers from highly variable outcomes and poorly understood mechanisms, hampering its validation. To address these issues, we propose a formal computational model of the NFT closed loop. Using Active Inference, a Bayesian framework modelling perception, action, and learning, we simulate agents interacting with an NFT environment. This enables us to test the impact of design choices (e.g., feedback quality, biomarker validity) and subject factors (e.g., prior beliefs) on training. Simulations show that training effectiveness is sensitive to feedback noise or bias, and to prior beliefs (highlighting the importance of guiding instructions), but also reveal that perfect feedback is insufficient to guarantee high performance. This approach provides a tool for assessing and predicting NFT variability, interpret empirical data, and potentially develop personalized training protocols.
Related papers
- Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing [125.75923987618977]
We propose the Cognitive Representation Dynamic Programming based Knowledge Tracing (CRDP-KT) model.<n>It is a dynamic programming algorithm to optimize cognitive representations based on the difficulty of the questions and the performance intervals between them.<n>It provides more accurate and systematic input features for subsequent model training, thereby minimizing distortion in the simulation of cognitive states.
arXiv Detail & Related papers (2025-06-03T14:44:48Z) - Impact of Evidence Theory Uncertainty on Training Object Detection Models [3.447848701446987]
Evidence Theory is applied to establish a relationship between ground truth labels and predictions.<n>The uncertainty measure is then utilized to weight the feedback loss for the subsequent iteration.
arXiv Detail & Related papers (2024-12-23T09:16:10Z) - Feature Perturbation Augmentation for Reliable Evaluation of Importance
Estimators in Neural Networks [5.439020425819001]
Post-hoc interpretability methods attempt to make the inner workings of deep neural networks more interpretable.
One of the most popular evaluation frameworks is to perturb features deemed important by an interpretability method.
We propose feature perturbation augmentation (FPA) which creates and adds perturbed images during the model training.
arXiv Detail & Related papers (2023-03-02T19:05:46Z) - Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptation [22.18972584098911]
Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage.
We take inspiration from the biological plausibility learning where the neuron responses are tuned based on a local synapse-change procedure.
We design a soft Hebbian learning process which provides an unsupervised and effective mechanism for online adaptation.
arXiv Detail & Related papers (2023-03-02T02:18:56Z) - Minimizing Control for Credit Assignment with Strong Feedback [65.59995261310529]
Current methods for gradient-based credit assignment in deep neural networks need infinitesimally small feedback signals.
We combine strong feedback influences on neural activity with gradient-based learning and show that this naturally leads to a novel view on neural network optimization.
We show that the use of strong feedback in DFC allows learning forward and feedback connections simultaneously, using a learning rule fully local in space and time.
arXiv Detail & Related papers (2022-04-14T22:06:21Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
We propose a hybrid predictive coding network that combines both iterative and amortized inference in a principled manner.
We demonstrate that our model is inherently sensitive to its uncertainty and adaptively balances balances to obtain accurate beliefs using minimum computational expense.
arXiv Detail & Related papers (2022-04-05T12:52:45Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - Efficient Estimation of Influence of a Training Instance [56.29080605123304]
We propose an efficient method for estimating the influence of a training instance on a neural network model.
Our method is inspired by dropout, which zero-masks a sub-network and prevents the sub-network from learning each training instance.
We demonstrate that the proposed method can capture training influences, enhance the interpretability of error predictions, and cleanse the training dataset for improving generalization.
arXiv Detail & Related papers (2020-12-08T04:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.