From Fog to Failure: How Dehazing Can Harm Clear Image Object Detection
- URL: http://arxiv.org/abs/2502.02027v3
- Date: Tue, 11 Feb 2025 18:33:27 GMT
- Title: From Fog to Failure: How Dehazing Can Harm Clear Image Object Detection
- Authors: Ashutosh Kumar, Aman Chadha,
- Abstract summary: This study explores the challenges of integrating human visual cue-based dehazing into object detection.
We propose a multi-stage framework where a lightweight detector identifies regions of interest, which are then enhanced via spatial attention-based dehazing.
Though effective in foggy conditions, this approach unexpectedly degrades the performance on clear images.
- Score: 2.76348549160803
- License:
- Abstract: This study explores the challenges of integrating human visual cue-based dehazing into object detection, given the selective nature of human perception. While human vision adapts dynamically to environmental conditions, computational dehazing does not always enhance detection uniformly. We propose a multi-stage framework where a lightweight detector identifies regions of interest (RoIs), which are then enhanced via spatial attention-based dehazing before final detection by a heavier model. Though effective in foggy conditions, this approach unexpectedly degrades the performance on clear images. We analyze this phenomenon, investigate possible causes, and offer insights for designing hybrid pipelines that balance enhancement and detection. Our findings highlight the need for selective preprocessing and challenge assumptions about universal benefits from cascading transformations.
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - LEAP:D - A Novel Prompt-based Approach for Domain-Generalized Aerial Object Detection [2.1233286062376497]
We introduce an innovative vision-language approach using learnable prompts.
This shift from conventional manual prompts aims to reduce domain-specific knowledge interference.
We streamline the training process with a one-step approach, updating the learnable prompt concurrently with model training.
arXiv Detail & Related papers (2024-11-14T04:39:10Z) - Perceptual Piercing: Human Visual Cue-based Object Detection in Low Visibility Conditions [2.0409124291940826]
This study proposes a novel deep learning framework inspired by atmospheric scattering and human visual cortex mechanisms to enhance object detection under poor visibility scenarios such as fog, smoke, and haze.
The objective is to enhance the precision and reliability of detection systems under adverse environmental conditions.
arXiv Detail & Related papers (2024-10-02T04:03:07Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - Attention Consistency Refined Masked Frequency Forgery Representation
for Generalizing Face Forgery Detection [96.539862328788]
Existing forgery detection methods suffer from unsatisfactory generalization ability to determine the authenticity in the unseen domain.
We propose a novel Attention Consistency Refined masked frequency forgery representation model toward generalizing face forgery detection algorithm (ACMF)
Experiment results on several public face forgery datasets demonstrate the superior performance of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-07-21T08:58:49Z) - Towards Spatial Equilibrium Object Detection [88.9747319572368]
In this paper, we study the spatial disequilibrium problem of modern object detectors.
We propose to quantify this problem by measuring the detection performance over zones.
This motivates us to design a more generalized measurement, termed Spatial equilibrium Precision.
arXiv Detail & Related papers (2023-01-14T17:33:26Z) - Self-Calibrating Anomaly and Change Detection for Autonomous Inspection
Robots [0.07366405857677225]
A visual anomaly or change detection algorithm identifies regions of an image that differ from a reference image or dataset.
We propose a comprehensive deep learning framework for detecting anomalies and changes in a priori unknown environments.
arXiv Detail & Related papers (2022-08-26T09:52:12Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - A Generative Approach for Detection-driven Underwater Image Enhancement [19.957923413999673]
We present a model that integrates generative adversarial network (GAN)-based image enhancement with diver detection task.
Our proposed approach restructures the GAN objective function to include information from a pre-trained diver detector.
We train our network on a large dataset of scuba divers, using a state-of-the-art diver detector, and demonstrate its utility on images collected from oceanic explorations.
arXiv Detail & Related papers (2020-12-10T21:33:12Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.