ASCenD-BDS: Adaptable, Stochastic and Context-aware framework for Detection of Bias, Discrimination and Stereotyping
- URL: http://arxiv.org/abs/2502.02072v1
- Date: Tue, 04 Feb 2025 07:44:20 GMT
- Title: ASCenD-BDS: Adaptable, Stochastic and Context-aware framework for Detection of Bias, Discrimination and Stereotyping
- Authors: Rajiv Bahl, Venkatesan N, Parimal Aglawe, Aastha Sarasapalli, Bhavya Kancharla, Chaitanya kolukuluri, Harish Mohite, Japneet Hora, Kiran Kakollu, Rahul Diman, Shubham Kapale, Sri Bhagya Kathula, Vamsikrishna Motru, Yogeshwar Reddy,
- Abstract summary: This paper presents framework named ASCenD BDS (Adaptable, Context and Context-aware framework for Detection of Bias, Discrimination and Stereotyping)
The framework presents approach to detecting bias, discrimination, stereotyping across various categories such as gender caste, age, disability, socioeconomic status, linguistic variations, etc.
The concept has been tested out in SFCLabs as part of product development.
- Score: 0.0
- License:
- Abstract: The rapid evolution of Large Language Models (LLMs) has transformed natural language processing but raises critical concerns about biases inherent in their deployment and use across diverse linguistic and sociocultural contexts. This paper presents a framework named ASCenD BDS (Adaptable, Stochastic and Context-aware framework for Detection of Bias, Discrimination and Stereotyping). The framework presents approach to detecting bias, discrimination, stereotyping across various categories such as gender, caste, age, disability, socioeconomic status, linguistic variations, etc., using an approach which is Adaptive, Stochastic and Context-Aware. The existing frameworks rely heavily on usage of datasets to generate scenarios for detection of Bias, Discrimination and Stereotyping. Examples include datasets such as Civil Comments, Wino Gender, WinoBias, BOLD, CrowS Pairs and BBQ. However, such an approach provides point solutions. As a result, these datasets provide a finite number of scenarios for assessment. The current framework overcomes this limitation by having features which enable Adaptability, Stochasticity, Context Awareness. Context awareness can be customized for any nation or culture or sub-culture (for example an organization's unique culture). In this paper, context awareness in the Indian context has been established. Content has been leveraged from Indian Census 2011 to have a commonality of categorization. A framework has been developed using Category, Sub-Category, STEM, X-Factor, Synonym to enable the features for Adaptability, Stochasticity and Context awareness. The framework has been described in detail in Section 3. Overall 800 plus STEMs, 10 Categories, 31 unique SubCategories were developed by a team of consultants at Saint Fox Consultancy Private Ltd. The concept has been tested out in SFCLabs as part of product development.
Related papers
- Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
We propose a novel taxonomy for bias evaluation of discriminative foundation models, such as Contrastive Language-Pretraining (CLIP)
We then systematically evaluate existing methods for mitigating bias in these models with respect to our taxonomy.
Specifically, we evaluate OpenAI's CLIP and OpenCLIP models for key applications, such as zero-shot classification, image retrieval and image captioning.
arXiv Detail & Related papers (2023-10-18T10:32:39Z) - An Empirical Analysis of Racial Categories in the Algorithmic Fairness
Literature [2.2713084727838115]
We analyze how race is conceptualized and formalized in algorithmic fairness frameworks.
We find that differing notions of race are adopted inconsistently, at times even within a single analysis.
We argue that the construction of racial categories is a value-laden process with significant social and political consequences.
arXiv Detail & Related papers (2023-09-12T21:23:29Z) - TIDE: Textual Identity Detection for Evaluating and Augmenting
Classification and Language Models [0.0]
Machine learning models can perpetuate unintended biases from unfair and imbalanced datasets.
We present a dataset coupled with an approach to improve text fairness in classifiers and language models.
We leverage TIDAL to develop an identity annotation and augmentation tool that can be used to improve the availability of identity context.
arXiv Detail & Related papers (2023-09-07T21:44:42Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - NBIAS: A Natural Language Processing Framework for Bias Identification
in Text [9.486702261615166]
Bias in textual data can lead to skewed interpretations and outcomes when the data is used.
An algorithm trained on biased data may end up making decisions that disproportionately impact a certain group of people.
We develop a comprehensive framework NBIAS that consists of four main layers: data, corpus construction, model development and an evaluation layer.
arXiv Detail & Related papers (2023-08-03T10:48:30Z) - CBBQ: A Chinese Bias Benchmark Dataset Curated with Human-AI
Collaboration for Large Language Models [52.25049362267279]
We present a Chinese Bias Benchmark dataset that consists of over 100K questions jointly constructed by human experts and generative language models.
The testing instances in the dataset are automatically derived from 3K+ high-quality templates manually authored with stringent quality control.
Extensive experiments demonstrate the effectiveness of the dataset in detecting model bias, with all 10 publicly available Chinese large language models exhibiting strong bias in certain categories.
arXiv Detail & Related papers (2023-06-28T14:14:44Z) - Uncovering and Categorizing Social Biases in Text-to-SQL [28.07279278808438]
Large pre-trained language models are acknowledged to carry social biases towards different demographics.
Existing Text-to- models are trained on clean, neutral datasets, such as Spider and Wiki.
This work aims to uncover and categorize social biases in Text-to- models.
arXiv Detail & Related papers (2023-05-25T17:08:56Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
We propose a new method for exploring the social biases in Text-to-Image (TTI) systems.
Our approach relies on characterizing the variation in generated images triggered by enumerating gender and ethnicity markers in the prompts.
We leverage this method to analyze images generated by 3 popular TTI systems and find that while all of their outputs show correlations with US labor demographics, they also consistently under-represent marginalized identities to different extents.
arXiv Detail & Related papers (2023-03-20T19:32:49Z) - Mitigating Racial Biases in Toxic Language Detection with an
Equity-Based Ensemble Framework [9.84413545378636]
Recent research has demonstrated how racial biases against users who write African American English exist in popular toxic language datasets.
We propose additional descriptive fairness metrics to better understand the source of these biases.
We show that our proposed framework substantially reduces the racial biases that the model learns from these datasets.
arXiv Detail & Related papers (2021-09-27T15:54:05Z) - One Label, One Billion Faces: Usage and Consistency of Racial Categories
in Computer Vision [75.82110684355979]
We study the racial system encoded by computer vision datasets supplying categorical race labels for face images.
We find that each dataset encodes a substantially unique racial system, despite nominally equivalent racial categories.
We find evidence that racial categories encode stereotypes, and exclude ethnic groups from categories on the basis of nonconformity to stereotypes.
arXiv Detail & Related papers (2021-02-03T22:50:04Z) - XL-WiC: A Multilingual Benchmark for Evaluating Semantic
Contextualization [98.61159823343036]
We present the Word-in-Context dataset (WiC) for assessing the ability to correctly model distinct meanings of a word.
We put forward a large multilingual benchmark, XL-WiC, featuring gold standards in 12 new languages.
Experimental results show that even when no tagged instances are available for a target language, models trained solely on the English data can attain competitive performance.
arXiv Detail & Related papers (2020-10-13T15:32:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.