論文の概要: Synthesis of Model Predictive Control and Reinforcement Learning: Survey and Classification
- arxiv url: http://arxiv.org/abs/2502.02133v1
- Date: Tue, 04 Feb 2025 09:06:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:01:08.174492
- Title: Synthesis of Model Predictive Control and Reinforcement Learning: Survey and Classification
- Title(参考訳): モデル予測制御と強化学習の合成:調査と分類
- Authors: Rudolf Reiter, Jasper Hoffmann, Dirk Reinhardt, Florian Messerer, Katrin Baumgärtner, Shamburaj Sawant, Joschka Boedecker, Moritz Diehl, Sebastien Gros,
- Abstract要約: この研究は、異なる組み合わせアルゴリズムを可能にする相違点、類似点、基本点を照らす。
本稿では,MPCのオンライン最適化手法を用いて,ポリシーのクローズドループ性能を向上する方法について検討する。
- 参考スコア(独自算出の注目度): 5.260523686933724
- License:
- Abstract: The fields of MPC and RL consider two successful control techniques for Markov decision processes. Both approaches are derived from similar fundamental principles, and both are widely used in practical applications, including robotics, process control, energy systems, and autonomous driving. Despite their similarities, MPC and RL follow distinct paradigms that emerged from diverse communities and different requirements. Various technical discrepancies, particularly the role of an environment model as part of the algorithm, lead to methodologies with nearly complementary advantages. Due to their orthogonal benefits, research interest in combination methods has recently increased significantly, leading to a large and growing set of complex ideas leveraging MPC and RL. This work illuminates the differences, similarities, and fundamentals that allow for different combination algorithms and categorizes existing work accordingly. Particularly, we focus on the versatile actor-critic RL approach as a basis for our categorization and examine how the online optimization approach of MPC can be used to improve the overall closed-loop performance of a policy.
- Abstract(参考訳): MPC と RL の分野はマルコフ決定過程における2つの制御手法を成功させる。
どちらのアプローチも同様の基本原理から派生しており、ロボット工学、プロセス制御、エネルギーシステム、自律運転などの実用用途で広く利用されている。
類似性にもかかわらず、MPCとRLは多様なコミュニティと異なる要件から生まれた異なるパラダイムに従っている。
様々な技術的相違、特にアルゴリズムの一部としての環境モデルの役割は、ほぼ補完的な優位性を持つ方法論に繋がる。
直交的な利点により、組合せ法の研究の関心は近年大きく増加し、MPCとRLを利用する複雑なアイデアの集合が拡大している。
この研究は、異なる組み合わせアルゴリズムを許容し、既存の作業をそれに応じて分類する、違い、類似性、基礎を照らす。
特に,我々の分類の基盤として,多彩なアクター・クリティックRLアプローチに着目し,MPCのオンライン最適化手法を用いて政策全体のクローズループ性能を向上させる方法について検討する。
関連論文リスト
- Comparison of Model Predictive Control and Proximal Policy Optimization for a 1-DOF Helicopter System [0.7499722271664147]
本研究は,Quanser Aero 2システムに適用された深層強化学習(DRL)アルゴリズムであるモデル予測制御(MPC)とPPOの比較分析を行う。
PPOは上昇時間と適応性に優れており、迅速な応答と適応性を必要とするアプリケーションには有望なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:35:34Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
我々は、報酬モデルとポリシーをトレーニングするために、AIHF(Alignment with Integrated Human Feedback)と呼ばれる単一ステージアプローチを開発する。
提案した手法は、一般的なアライメントアルゴリズムに容易に還元し、活用できる、効率的なアルゴリズムの集合を認めている。
本研究では,LLMにおけるアライメント問題と,MuJoCoにおけるロボット制御問題を含む広範な実験により,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-11T01:20:53Z) - Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning [48.79569442193824]
我々は,COMRLアルゴリズムが,タスク変数$M$と,その潜在表現$Z$の相互情報目的を,様々な近似境界を実装して最適化していることを示す。
実演として、$I(Z; M)$の教師付きおよび自己教師型実装を提案し、対応する最適化アルゴリズムがRLベンチマークの幅広いスペクトルにわたって顕著な一般化を示すことを実証的に示す。
本研究は,COMRL法の情報理論基盤を構築し,強化学習の文脈におけるタスク表現学習の理解を深める。
論文 参考訳(メタデータ) (2024-02-04T09:58:42Z) - Personalized Reinforcement Learning with a Budget of Policies [9.846353643883443]
機械学習(ML)におけるパーソナライゼーションは、ユーザの個々の特性に対する決定をモデル化する。
本稿では,Markov Decision Processes (r-MDPs) に代表される新しいフレームワークを提案する。
r-MDPでは、少数の代表ポリシーとのインタラクションを通じて、それぞれ独自の嗜好を持つ多様なユーザ人口に対応する。
r-MDPを効率的に解くための2つの深層強化学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-01-12T11:27:55Z) - Stepsize Learning for Policy Gradient Methods in Contextual Markov
Decision Processes [35.889129338603446]
ポリシーに基づくアルゴリズムは、モデルフリーRLにおいて最も広く採用されている手法の一つである。
彼らは、一連の不均一なタスクを達成するように頼まれたときに苦労する傾向があります。
メタMDPと呼ばれる新しい定式化を導入し、RLにおける任意のハイパーパラメータ選択問題を解くのに使うことができる。
論文 参考訳(メタデータ) (2023-06-13T12:58:12Z) - Enforcing the consensus between Trajectory Optimization and Policy
Learning for precise robot control [75.28441662678394]
強化学習(RL)と軌道最適化(TO)は強い相補的優位性を示す。
グローバルコントロールポリシを迅速に学習する上で,これらのアプローチに対して,いくつかの改良が提案されている。
論文 参考訳(メタデータ) (2022-09-19T13:32:09Z) - Towards Applicable Reinforcement Learning: Improving the Generalization
and Sample Efficiency with Policy Ensemble [43.95417785185457]
金融取引やロジスティックシステムといった現実世界の応用において、強化学習アルゴリズムが成功することは困難である。
本稿では,エンド・ツー・エンドでアンサンブルポリシーを学習するEnsemble Proximal Policy Optimization (EPPO)を提案する。
EPPOは、バニラポリシー最適化アルゴリズムやその他のアンサンブル手法と比較して、より効率が高く、現実世界のアプリケーションにとって堅牢である。
論文 参考訳(メタデータ) (2022-05-19T02:25:32Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Probabilistic Mixture-of-Experts for Efficient Deep Reinforcement
Learning [7.020079427649125]
学習効率と性能向上のためには,非特異な最適タスクに対する識別可能なスキルの把握が不可欠であることを示す。
マルチモーダル政策のための確率的混合専門家(PMOE)と、無差問題に対する新しい勾配推定器を提案する。
論文 参考訳(メタデータ) (2021-04-19T08:21:56Z) - Imitation Learning from MPC for Quadrupedal Multi-Gait Control [63.617157490920505]
本稿では,歩行ロボットの複数の歩行を模倣する単一ポリシーを学習する学習アルゴリズムを提案する。
モデル予測制御によって導かれる模擬学習のアプローチであるMPC-Netを使用し、拡張します。
ハードウェアに対する我々のアプローチを検証し、学習したポリシーが教師に取って代わって複数の歩留まりを制御できることを示します。
論文 参考訳(メタデータ) (2021-03-26T08:48:53Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。