論文の概要: Multilingual Attribute Extraction from News Web Pages
- arxiv url: http://arxiv.org/abs/2502.02167v1
- Date: Tue, 04 Feb 2025 09:43:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:01:35.953854
- Title: Multilingual Attribute Extraction from News Web Pages
- Title(参考訳): ニュースページからの多言語属性抽出
- Authors: Pavel Bedrin, Maksim Varlamov, Alexander Yatskov,
- Abstract要約: 本稿では,複数の言語にまたがるニュース記事ページから属性を自動的に抽出するという課題に対処する。
我々は6言語(英語、ドイツ語、ロシア語、中国語、韓国語、アラビア語)にわたる3,172のマークアップニュースページからなる多言語データセットを作成した。
学習済みの最先端モデルであるMarkupLMを微調整し、これらのページからニュース属性を抽出し、ページを英語に翻訳することが抽出品質に与える影響を評価した。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License:
- Abstract: This paper addresses the challenge of automatically extracting attributes from news article web pages across multiple languages. Recent neural network models have shown high efficacy in extracting information from semi-structured web pages. However, these models are predominantly applied to domains like e-commerce and are pre-trained using English data, complicating their application to web pages in other languages. We prepared a multilingual dataset comprising 3,172 marked-up news web pages across six languages (English, German, Russian, Chinese, Korean, and Arabic) from 161 websites. The dataset is publicly available on GitHub. We fine-tuned the pre-trained state-of-the-art model, MarkupLM, to extract news attributes from these pages and evaluated the impact of translating pages into English on extraction quality. Additionally, we pre-trained another state-of-the-art model, DOM-LM, on multilingual data and fine-tuned it on our dataset. We compared both fine-tuned models to existing open-source news data extraction tools, achieving superior extraction metrics.
- Abstract(参考訳): 本稿では,複数の言語にまたがるニュース記事のWebページから属性を自動的に抽出するという課題に対処する。
最近のニューラルネットワークモデルは、半構造化Webページから情報を抽出する上で高い効果を示している。
しかし、これらのモデルは、主にeコマースのようなドメインに適用され、英語のデータを使用して事前訓練され、他の言語のWebページへのアプリケーションを複雑にしている。
我々は161のウェブサイトから6つの言語(英語、ドイツ語、ロシア語、中国語、韓国語、アラビア語)にわたる3,172のマークアップニュースページからなる多言語データセットを作成した。
データセットはGitHubで公開されている。
学習済みの最先端モデルであるMarkupLMを微調整し、これらのページからニュース属性を抽出し、ページを英語に翻訳することが抽出品質に与える影響を評価した。
さらに、マルチリンガルデータ上で、別の最先端モデルのDOM-LMを事前訓練し、データセット上で微調整しました。
我々は、既存のオープンソースニュースデータ抽出ツールと比較し、優れた抽出基準を達成した。
関連論文リスト
- MURI: High-Quality Instruction Tuning Datasets for Low-Resource Languages via Reverse Instructions [54.08017526771947]
MURI(Multilingual Reverse Instructions)は低リソース言語のための高品質な命令チューニングデータセットを生成する。
MURIは、低リソース言語における既存の人文テキストから命令出力ペアを生成する。
私たちのデータセットであるMURI-ITには200言語にまたがる200万以上の命令出力ペアが含まれています。
論文 参考訳(メタデータ) (2024-09-19T17:59:20Z) - Pretraining Data and Tokenizer for Indic LLM [1.7729311045335219]
我々は,多言語Indic大言語モデル構築のためのデータ準備のための新しいアプローチを開発する。
われわれの厳密なデータ取得は、Common Crawl、Indic Book、ニュース記事、Wikipediaなど、オープンソースとプロプライエタリなソースにまたがっている。
Indic言語毎に、冗長で低品質なテキストコンテンツを効果的に除去するカスタムプリプロセッシングパイプラインを設計する。
論文 参考訳(メタデータ) (2024-07-17T11:06:27Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
インドネシアの地方言語について事例研究を行う。
データセット構築におけるオンラインスクラップ,人文翻訳,および母語話者による段落作成の有効性を比較した。
本研究は,母語話者による段落作成によって生成されたデータセットが,語彙的多様性と文化的内容の点で優れた品質を示すことを示す。
論文 参考訳(メタデータ) (2023-09-19T14:42:33Z) - MegaWika: Millions of reports and their sources across 50 diverse
languages [74.3909725023673]
MegaWikaは、50の言語で1300万のWikipedia記事と、7100万の参考資料で構成されている。
我々は、このデータセットを無数のアプリケーションに処理し、非英語の記事を言語間アプリケーションに翻訳する。
MegaWikaは、文レベルのレポート生成のための最大のリソースであり、マルチランガルである唯一のレポート生成データセットである。
論文 参考訳(メタデータ) (2023-07-13T20:04:02Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - Language-Agnostic Website Embedding and Classification [12.86558129722198]
92言語で100万以上のWebサイトを持つデータセットをリリースし、Curlieから相対ラベルを収集しました。
ホームページに基づいてWebサイトを分類・埋め込みするマシン学習モデルであるHomepage2Vecを紹介する。
ホームページ2Vecは、マクロ平均F1スコア0.90のWebサイトを正しく分類し、低および高ソース言語で安定したパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-01-10T22:31:48Z) - TunBERT: Pretrained Contextualized Text Representation for Tunisian
Dialect [0.0]
表現不足言語に対するモノリンガルトランスフォーマーに基づく言語モデルのトレーニングの実現可能性について検討する。
構造化データの代わりにノイズの多いWebクローリングデータを使用することは、そのような非標準言語にとってより便利であることを示す。
我々の最高のパフォーマンスTunBERTモデルは、下流の3つのタスクすべてにおいて最先端のタスクに到達または改善します。
論文 参考訳(メタデータ) (2021-11-25T15:49:50Z) - Multilingual Neural Semantic Parsing for Low-Resourced Languages [1.6244541005112747]
英語,イタリア語,日本語の新しい多言語意味解析データセットを提案する。
本研究では,事前学習したエンコーダを用いた多言語学習がTOPデータセットのベースラインを大幅に上回ることを示す。
英語データのみに基づいて訓練されたセマンティクスは、イタリア語の文に対して44.9%の精度でゼロショットのパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-06-07T09:53:02Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Cross-lingual Information Retrieval with BERT [8.052497255948046]
本稿では、人気のある双方向言語モデルBERTを用いて、英語クエリと外国語文書の関係をモデル化し、学習する。
BERTに基づく深部関係マッチングモデルを導入し,教師の弱い事前学習多言語BERTモデルを微調整して訓練する。
短い英語クエリに対するリトアニア語文書の検索実験の結果、我々のモデルは有効であり、競争ベースラインのアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-04-24T23:32:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。