論文の概要: SurvHive: a package to consistently access multiple survival-analysis packages
- arxiv url: http://arxiv.org/abs/2502.02223v1
- Date: Tue, 04 Feb 2025 11:02:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:21:56.086382
- Title: SurvHive: a package to consistently access multiple survival-analysis packages
- Title(参考訳): SurvHive: 複数のサバイバル分析パッケージを一貫してアクセスするパッケージ
- Authors: Giovanni Birolo, Ivan Rossi, Flavio Sartori, Cesare Rollo, Tiziana Sanavia, Piero Fariselli,
- Abstract要約: SurvHiveはPythonベースのフレームワークで、Scikit-learnをモデルとしたコヒーレントかつインターフェース内でサバイバル分析メソッドを統合するように設計されている。
SurvHiveは古典的な統計モデルと最先端のディープラーニングアプローチを統合しており、トランスフォーマーベースのアーキテクチャやパラメトリックサバイバルモデルを含んでいる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Survival analysis, a foundational tool for modeling time-to-event data, has seen growing integration with machine learning (ML) approaches to handle the complexities of censored data and time-varying risks. Despite these advances, leveraging state-of-the-art survival models remains a challenge due to the fragmented nature of existing implementations, which lack standardized interfaces and require extensive preprocessing. We introduce SurvHive, a Python-based framework designed to unify survival analysis methods within a coherent and extensible interface modeled on scikit-learn. SurvHive integrates classical statistical models with cutting-edge deep learning approaches, including transformer-based architectures and parametric survival models. Using a consistent API, SurvHive simplifies model training, evaluation, and optimization, significantly reducing the barrier to entry for ML practitioners exploring survival analysis. The package includes enhanced support for hyper-parameter tuning, time-dependent risk evaluation metrics, and cross-validation strategies tailored to censored data. With its extensibility and focus on usability, SurvHive provides a bridge between survival analysis and the broader ML community, facilitating advancements in time-to-event modeling across domains. The SurvHive code and documentation are available freely at https://github.com/compbiomed-unito/survhive.
- Abstract(参考訳): 時系列データをモデリングするための基本的なツールであるSurvival Analysisは、検閲されたデータの複雑さと時間変化リスクを扱うために、機械学習(ML)アプローチとの統合が増加している。
これらの進歩にもかかわらず、最先端のサバイバルモデルを活用することは、標準化されたインターフェースが欠如し、広範な事前処理を必要とする既存の実装の断片的な性質のため、依然として課題である。
そこで我々は,SurvHiveというPythonベースのフレームワークを紹介した。
SurvHiveは古典的な統計モデルと最先端のディープラーニングアプローチを統合しており、トランスフォーマーベースのアーキテクチャやパラメトリックサバイバルモデルを含んでいる。
一貫性のあるAPIを使用すると、SurvHiveはモデルのトレーニング、評価、最適化を単純化し、生存分析を探求するML実践者の参入障壁を著しく低減する。
このパッケージには、ハイパーパラメータチューニング、時間依存リスク評価メトリクス、検閲データに適したクロスバリデーション戦略のサポート強化が含まれている。
拡張性とユーザビリティを重視したSurvHiveは、サバイバル分析と幅広いMLコミュニティの間の橋渡しを提供し、ドメイン間の時間対イベントモデリングの進歩を促進する。
SurvHiveのコードとドキュメントはhttps://github.com/compbiomed-unito/survhive.comで無料で入手できる。
関連論文リスト
- Self-Consistent Equation-guided Neural Networks for Censored Time-to-Event Data [11.550402345767141]
本稿では,自己整合方程式を利用した生成逆数ネットワークを用いた条件付き生存関数の非パラメトリック推定手法を提案する。
提案手法はモデルフリーであり,条件付き生存関数の構造に関するパラメトリックな仮定は不要である。
論文 参考訳(メタデータ) (2025-03-12T06:24:35Z) - CleanSurvival: Automated data preprocessing for time-to-event models using reinforcement learning [0.0]
データ前処理は、機械学習の重要かつ頻繁に無視される側面である。
CleanSurvivalは、プレプロセスパイプラインを最適化するための強化学習ベースのソリューションである。
連続的および分類的変数を処理し、Q-learningを使用して、データ計算、外れ値検出、特徴抽出のどの組み合わせが最適なパフォーマンスを達成するかを選択できる。
論文 参考訳(メタデータ) (2025-02-06T10:33:37Z) - Deep End-to-End Survival Analysis with Temporal Consistency [49.77103348208835]
本稿では,大規模長手データの処理を効率的に行うために,Survival Analysisアルゴリズムを提案する。
我々の手法における中心的な考え方は、時間とともにデータにおける過去と将来の成果が円滑に進化するという仮説である時間的一貫性である。
我々のフレームワークは、安定したトレーニング信号を提供することで、時間的一貫性を大きなデータセットに独自に組み込む。
論文 参考訳(メタデータ) (2024-10-09T11:37:09Z) - Adaptive Transformer Modelling of Density Function for Nonparametric Survival Analysis [11.35395323124404]
生存分析は、経済学、工学、医療など様々な分野において重要な役割を担っている。
本稿では,従来の分布仮定を使わずに,高品質な単文PDFを作成できる新しい生存回帰手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T04:29:59Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Multi-modal Data Binding for Survival Analysis Modeling with Incomplete Data and Annotations [19.560652381770243]
我々は、モダリティと検閲されたサバイバルラベルにまたがる不完全なデータを同時に扱う新しいフレームワークを導入する。
我々のアプローチでは、高度な基礎モデルを用いて個々のモダリティを符号化し、それらを普遍的な表現空間に整列させる。
提案手法は,2つのサバイバル分析タスクにおいて,両者が適用したデータセットの予測精度に優れることを示す。
論文 参考訳(メタデータ) (2024-07-25T02:55:39Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
本稿では,レイヤワイドパラメータのオーバーライトや決定境界の歪みに起因する,概念的にシンプルで効果的な手法を提案する。
提案手法は,ゼロの指数バッファと1.02倍の差が絶対的に優れていても,競争精度が向上する。
論文 参考訳(メタデータ) (2024-01-17T09:01:29Z) - Robust Survival Analysis with Adversarial Regularization [6.001304967469112]
生存分析(SA)は、ある事象が起こるまでの時間をモデル化する。
最近の研究によると、ニューラルネットワーク(NN)はSAの複雑な関係を捉えることができる。
我々は、NN検証の進歩を活用して、堅牢で完全なパラメトリックサバイバルモデルのためのアルゴリズムを作成する。
論文 参考訳(メタデータ) (2023-12-26T12:18:31Z) - Composite Survival Analysis: Learning with Auxiliary Aggregated
Baselines and Survival Scores [0.0]
Survival Analysis (SA) は時間対イベントモデリングのデフォルト手法である。
本研究は,SAモデルのトレーニングと推論を,(1)集団の全体行動を捉えた集合的ベースラインハザードに分解し,(2)個別に分布した生存スコア,(2)そのメンバーの慣用的確率的ダイナミクスを,完全にパラメトリックな設定でモデル化することで改善する方法を示す。
論文 参考訳(メタデータ) (2023-12-10T11:13:22Z) - Fast-Slow Test-Time Adaptation for Online Vision-and-Language Navigation [67.18144414660681]
オンラインビジョン・アンド・ランゲージナビゲーション(VLN)のためのFSTTA(Fast-Slow Test-Time Adaptation)アプローチを提案する。
提案手法は,4つのベンチマークにおいて顕著な性能向上を実現する。
論文 参考訳(メタデータ) (2023-11-22T07:47:39Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
適応学習パラダイムの下で,textbfForgery-aware textbfAdaptive textbfVision textbfTransformer(FA-ViT)を提案する。
FA-ViTは、クロスデータセット評価において、Celeb-DFおよびDFDCデータセット上で93.83%と78.32%のAUCスコアを達成する。
論文 参考訳(メタデータ) (2023-09-20T06:51:11Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - SurvivalGAN: Generating Time-to-Event Data for Survival Analysis [121.84429525403694]
検閲と時間的地平線の不均衡は、生成モデルに生存分析に特有の3つの新しい障害モードを経験させる。
本稿では,検閲やイベントの地平線における不均衡に対処し,生存データを扱う生成モデルであるSurvivalGANを提案する。
医療データセットに関する広範な実験により,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-02-24T17:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。