Nonclassical Nullifiers for Quantum Hypergraph States
- URL: http://arxiv.org/abs/2502.02226v1
- Date: Tue, 04 Feb 2025 11:06:19 GMT
- Title: Nonclassical Nullifiers for Quantum Hypergraph States
- Authors: Abhijith Ravikumar, Darren W. Moore, Radim Filip,
- Abstract summary: Quantum hypergraph states form a generalisation of the graph state formalism.
Networks of such states are able to achieve universality for continuous variable measurement based quantum computation.
- Score: 0.0
- License:
- Abstract: Quantum hypergraph states form a generalisation of the graph state formalism that goes beyond the pairwise (dyadic) interactions imposed by remaining inside the Gaussian approximation. Networks of such states are able to achieve universality for continuous variable measurement based quantum computation with only Gaussian measurements. For normalised states, the simplest hypergraph states are formed from $k$-adic interactions among a collection of $k$ harmonic oscillator ground states. However such powerful resources have not yet been observed in experiments and their robustness and scalability have not been tested. Here we develop and analyse necessary criteria for hypergraph nonclassicality based on simultaneous nonlinear squeezing in the nullifiers of hypergraph states. We put forward an essential analysis of their robustness to realistic scenarios involving thermalisation or loss and suggest several basic proof-of-principle options for experiments to observe nonclassicality in hypergraph states.
Related papers
- Calibrated hypergraph states: II calibrated hypergraph state construction and applications [0.0]
We introduce and investigate calibrated hypergraph states, an extension of weighted hypergraph states codified by hypergraphs equipped with calibrations.
We build upon the graded $varOmega$ monadic framework worked out in the companion paper, focusing on qudits over a generic Galois ring.
arXiv Detail & Related papers (2025-01-31T08:57:56Z) - Hypergraphs as Weighted Directed Self-Looped Graphs: Spectral Properties, Clustering, Cheeger Inequality [40.215737469808026]
Hypergraphs arise when studying group relations and have been widely used in the field of machine learning.
There has not been a unified formulation of hypergraphs, yet the recently proposed edge-dependent Rayleigh weights (EDVW) modeling is one of the most generalized modeling methods of hypergraphs.
We propose our definitions of hypergraph Quotient, NCut, boundary/cut, volume, and conductance, which are consistent with the corresponding definitions on graphs.
Then, we prove that the normalized hypergraph Laplacian is associated with the NCut value, which inspires our HyperClus-G algorithm for spectral clustering
arXiv Detail & Related papers (2024-10-23T05:16:48Z) - Nonlocality under Jaynes-Cummings evolution: beyond pseudospin operators [44.99833362998488]
We re-visit the generation and evolution of (Bell) nonlocality in hybrid scenarios whose dynamics is determined by the Jaynes-Cummings Hamiltonian.
Recent results on the optimal Bell violation in qubit-qudit systems show that the nonlocality is much greater than previously estimated.
arXiv Detail & Related papers (2024-10-14T16:01:23Z) - Graphical Calculus for Non-Gaussian Quantum States [1.653052113976862]
We provide a graphical method to describe and analyze non-Gaussian quantum states using a hypergraph framework.
We present illustrative examples on the preparation of non-Gaussian states rooted in these graph-based formalisms.
arXiv Detail & Related papers (2024-09-11T14:32:26Z) - Quantifying nonclassicality and entanglement of Gaussian states [6.181008505226926]
The robustness of nonclassicality or entanglement is demonstrated analytically for one-mode, two-mode Gaussain states and multimode symmetric Gaussian states.
For squeezed thermal states, the nonclassicality is equal to the entanglement for the two-mode case, while they are far apart for multimode cases.
arXiv Detail & Related papers (2023-09-21T06:37:52Z) - Symmetric hypergraph states: Entanglement quantification and robust Bell
nonlocality [0.0]
We quantify entanglement and nonlocality for large classes of quantum hypergraph states.
We recognize the resemblance between symmetric graph states and symmetric hypergraph states.
arXiv Detail & Related papers (2023-02-03T12:49:32Z) - Dynamics-Based Entanglement Witnesses for Non-Gaussian States of Harmonic Oscillators [0.0]
Entanglement is inferred from the Tsirelson nonclassicality test on one of the normal modes.
In each round, the protocol requires measuring only the sign of one coordinate at one among several times.
arXiv Detail & Related papers (2022-10-19T07:53:57Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.