論文の概要: Exact Sequence Classification with Hardmax Transformers
- arxiv url: http://arxiv.org/abs/2502.02270v1
- Date: Tue, 04 Feb 2025 12:31:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:01:55.921313
- Title: Exact Sequence Classification with Hardmax Transformers
- Title(参考訳): ハードマックス変換器を用いたエクササイズ分類
- Authors: Albert Alcalde, Giovanni Fantuzzi, Enrique Zuazua,
- Abstract要約: 我々は、ハードマックスのアテンショントランスフォーマーが$N$ラベル付きシーケンスのデータセットを$mathbbRd$, $dgeq 2$で完全に分類することを証明している。
具体的には、$mathbbRd$で任意の長さの$N$シーケンスを与えられた場合、$mathcalO(N)$ブロックと$mathcalO(Nd)$パラメータで変換器を構築し、このデータセットを完全に分類する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We prove that hardmax attention transformers perfectly classify datasets of $N$ labeled sequences in $\mathbb{R}^d$, $d\geq 2$. Specifically, given $N$ sequences with an arbitrary but finite length in $\mathbb{R}^d$, we construct a transformer with $\mathcal{O}(N)$ blocks and $\mathcal{O}(Nd)$ parameters perfectly classifying this dataset. Our construction achieves the best complexity estimate to date, independent of the length of the sequences, by innovatively alternating feed-forward and self-attention layers and by capitalizing on the clustering effect inherent to the latter. Our novel constructive method also uses low-rank parameter matrices within the attention mechanism, a common practice in real-life transformer implementations. Consequently, our analysis holds twofold significance: it substantially advances the mathematical theory of transformers and it rigorously justifies their exceptional real-world performance in sequence classification tasks.
- Abstract(参考訳): ハードマックスアテンション変換器は$N$ラベル付きシーケンスのデータセットを$\mathbb{R}^d$, $d\geq 2$で完全に分類する。
具体的には、$\mathbb{R}^d$の任意の長さの$N$列が与えられた場合、$\mathcal{O}(N)$ブロックと$\mathcal{O}(Nd)$パラメータで変換器を構築し、このデータセットを完全に分類する。
提案手法は,フィードフォワード層とセルフアテンション層とを革新的に交互に交互に行い,後者に固有のクラスタリング効果に乗じることで,これまでで最高の複雑性推定を達成している。
提案手法では,アテンション機構内での低ランクパラメータ行列も利用している。
その結果,変換器の数学的理論が大幅に進歩し,配列分類タスクにおける例外的な実世界の性能を厳格に正当化することがわかった。
関連論文リスト
- Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers [54.20763128054692]
我々は,2層変換器が$n$-gramのマルコフ連鎖データ上でICLを実行するためにどのように訓練されているかを検討する。
クロスエントロピー ICL 損失に対する勾配流が極限モデルに収束することを証明する。
論文 参考訳(メタデータ) (2024-09-09T18:10:26Z) - Chain of Thought Empowers Transformers to Solve Inherently Serial Problems [57.58801785642868]
思考の連鎖(CoT)は、算術や記号的推論タスクにおいて、大きな言語モデル(LLM)の精度を向上させるための非常に効果的な方法である。
この研究は、表現性のレンズを通してデコーダのみの変換器に対するCoTのパワーを理論的に理解する。
論文 参考訳(メタデータ) (2024-02-20T10:11:03Z) - p-Laplacian Transformer [7.2541371193810384]
グラフと画像信号処理をルーツとする$p$-Laplacian正規化は、これらのデータに対する正規化効果を制御するパラメータ$p$を導入している。
まず、自己注意機構が最小のラプラシアン正規化を得ることを示す。
次に、新しい変圧器のクラス、すなわち$p$-Laplacian Transformer (p-LaT)を提案する。
論文 参考訳(メタデータ) (2023-11-06T16:25:56Z) - Transformers as Support Vector Machines [54.642793677472724]
自己アテンションの最適化幾何と厳密なSVM問題との間には,形式的等価性を確立する。
勾配降下に最適化された1層変圧器の暗黙バイアスを特徴付ける。
これらの発見は、最適なトークンを分離し選択するSVMの階層としてのトランスフォーマーの解釈を刺激していると信じている。
論文 参考訳(メタデータ) (2023-08-31T17:57:50Z) - Sampled Transformer for Point Sets [80.66097006145999]
スパース変換器は、連続列列列関数の普遍近似器でありながら、自己アテンション層の計算複雑性を$O(n)$に下げることができる。
我々は、追加の帰納バイアスを伴わずに点集合要素を直接処理できる$O(n)$複雑性サンプリング変換器を提案する。
論文 参考訳(メタデータ) (2023-02-28T06:38:05Z) - An Online Riemannian PCA for Stochastic Canonical Correlation Analysis [37.8212762083567]
投影行列の再パラメータ化を用いた正準相関解析(CCA)のための効率的なアルゴリズム(RSG+)を提案する。
本論文は,その特性の定式化と技術的解析に主眼を置いているが,本実験により,一般的なデータセットに対する経験的挙動が極めて有望であることが確認された。
論文 参考訳(メタデータ) (2021-06-08T23:38:29Z) - $O(n)$ Connections are Expressive Enough: Universal Approximability of
Sparse Transformers [71.31712741938837]
注意層ごとに$O(n)$接続しか持たないスパース変換器は、$n2$接続を持つ高密度モデルと同じ関数クラスを近似できることを示す。
また、標準NLPタスクにおいて、異なるパターン・レベルの違いを比較検討する。
論文 参考訳(メタデータ) (2020-06-08T18:30:12Z) - Supervised Quantile Normalization for Low-rank Matrix Approximation [50.445371939523305]
我々は、$X$ の値と $UV$ の値を行ワイズで操作できる量子正規化演算子のパラメータを学習し、$X$ の低ランク表現の質を改善する。
本稿では,これらの手法が合成およびゲノムデータセットに適用可能であることを実証する。
論文 参考訳(メタデータ) (2020-02-08T21:06:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。