Exact Sequence Classification with Hardmax Transformers
- URL: http://arxiv.org/abs/2502.02270v1
- Date: Tue, 04 Feb 2025 12:31:00 GMT
- Title: Exact Sequence Classification with Hardmax Transformers
- Authors: Albert Alcalde, Giovanni Fantuzzi, Enrique Zuazua,
- Abstract summary: We prove that hardmax attention transformers perfectly classify datasets of $N$ labeled sequences in $mathbbRd$, $dgeq 2$.
Specifically, given $N$ sequences with an arbitrary but finite length in $mathbbRd$, we construct a transformer with $mathcalO(N)$ blocks and $mathcalO(Nd)$ parameters perfectly classifying this dataset.
- Score: 0.0
- License:
- Abstract: We prove that hardmax attention transformers perfectly classify datasets of $N$ labeled sequences in $\mathbb{R}^d$, $d\geq 2$. Specifically, given $N$ sequences with an arbitrary but finite length in $\mathbb{R}^d$, we construct a transformer with $\mathcal{O}(N)$ blocks and $\mathcal{O}(Nd)$ parameters perfectly classifying this dataset. Our construction achieves the best complexity estimate to date, independent of the length of the sequences, by innovatively alternating feed-forward and self-attention layers and by capitalizing on the clustering effect inherent to the latter. Our novel constructive method also uses low-rank parameter matrices within the attention mechanism, a common practice in real-life transformer implementations. Consequently, our analysis holds twofold significance: it substantially advances the mathematical theory of transformers and it rigorously justifies their exceptional real-world performance in sequence classification tasks.
Related papers
- Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers [54.20763128054692]
We study how a two-attention-layer transformer is trained to perform ICL on $n$-gram Markov chain data.
We prove that the gradient flow with respect to a cross-entropy ICL loss converges to a limiting model.
arXiv Detail & Related papers (2024-09-09T18:10:26Z) - Chain of Thought Empowers Transformers to Solve Inherently Serial Problems [57.58801785642868]
Chain of thought (CoT) is a highly effective method to improve the accuracy of large language models (LLMs) on arithmetics and symbolic reasoning tasks.
This work provides a theoretical understanding of the power of CoT for decoder-only transformers through the lens of expressiveness.
arXiv Detail & Related papers (2024-02-20T10:11:03Z) - p-Laplacian Transformer [7.2541371193810384]
$p$-Laplacian regularization, rooted in graph and image signal processing, introduces a parameter $p$ to control the regularization effect on these data.
We first show that the self-attention mechanism obtains the minimal Laplacian regularization.
We then propose a novel class of transformers, namely the $p$-Laplacian Transformer (p-LaT)
arXiv Detail & Related papers (2023-11-06T16:25:56Z) - Transformers as Support Vector Machines [54.642793677472724]
We establish a formal equivalence between the optimization geometry of self-attention and a hard-margin SVM problem.
We characterize the implicit bias of 1-layer transformers optimized with gradient descent.
We believe these findings inspire the interpretation of transformers as a hierarchy of SVMs that separates and selects optimal tokens.
arXiv Detail & Related papers (2023-08-31T17:57:50Z) - Sampled Transformer for Point Sets [80.66097006145999]
sparse transformer can reduce the computational complexity of the self-attention layers to $O(n)$, whilst still being a universal approximator of continuous sequence-to-sequence functions.
We propose an $O(n)$ complexity sampled transformer that can process point set elements directly without any additional inductive bias.
arXiv Detail & Related papers (2023-02-28T06:38:05Z) - An Online Riemannian PCA for Stochastic Canonical Correlation Analysis [37.8212762083567]
We present an efficient algorithm (RSG+) for canonical correlation analysis (CCA) using a reparametrization of the projection matrices.
While the paper primarily focuses on the formulation and technical analysis of its properties, our experiments show that the empirical behavior on common datasets is quite promising.
arXiv Detail & Related papers (2021-06-08T23:38:29Z) - $O(n)$ Connections are Expressive Enough: Universal Approximability of
Sparse Transformers [71.31712741938837]
We show that sparse Transformers with only $O(n)$ connections per attention layer can approximate the same function class as the dense model with $n2$ connections.
We also present experiments comparing different patterns/levels of sparsity on standard NLP tasks.
arXiv Detail & Related papers (2020-06-08T18:30:12Z) - Supervised Quantile Normalization for Low-rank Matrix Approximation [50.445371939523305]
We learn the parameters of quantile normalization operators that can operate row-wise on the values of $X$ and/or of its factorization $UV$ to improve the quality of the low-rank representation of $X$ itself.
We demonstrate the applicability of these techniques on synthetic and genomics datasets.
arXiv Detail & Related papers (2020-02-08T21:06:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.