Information-Theoretic Proofs for Diffusion Sampling
- URL: http://arxiv.org/abs/2502.02305v1
- Date: Tue, 04 Feb 2025 13:19:21 GMT
- Title: Information-Theoretic Proofs for Diffusion Sampling
- Authors: Galen Reeves, Henry D. Pfister,
- Abstract summary: This paper provides an elementary, self-contained analysis of diffusion-based sampling methods for generative modeling.
We show that, if the diffusion step sizes are chosen sufficiently small, then the sampling distribution is provably close to the target distribution.
Our results also provide a transparent view on how to accelerate convergence by introducing additional randomness in each step to match higher order moments in the comparison process.
- Score: 13.095978794717007
- License:
- Abstract: This paper provides an elementary, self-contained analysis of diffusion-based sampling methods for generative modeling. In contrast to existing approaches that rely on continuous-time processes and then discretize, our treatment works directly with discrete-time stochastic processes and yields precise non-asymptotic convergence guarantees under broad assumptions. The key insight is to couple the sampling process of interest with an idealized comparison process that has an explicit Gaussian-convolution structure. We then leverage simple identities from information theory, including the I-MMSE relationship, to bound the discrepancy (in terms of the Kullback-Leibler divergence) between these two discrete-time processes. In particular, we show that, if the diffusion step sizes are chosen sufficiently small and one can approximate certain conditional mean estimators well, then the sampling distribution is provably close to the target distribution. Our results also provide a transparent view on how to accelerate convergence by introducing additional randomness in each step to match higher order moments in the comparison process.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Inferring biological processes with intrinsic noise from cross-sectional data [0.8192907805418583]
Inferring dynamical models from data continues to be a significant challenge in computational biology.
We show that probability flow inference (PFI) disentangles force from intrinsicity while retaining the algorithmic ease of ODE inference.
In practical applications, we show that PFI enables accurate parameter and force estimation in high-dimensional reaction networks, and that it allows inference of cell differentiation dynamics with molecular noise.
arXiv Detail & Related papers (2024-10-10T00:33:25Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Space-Time Diffusion Bridge [0.4527270266697462]
We introduce a novel method for generating new synthetic samples independent and identically distributed from real probability distributions.
We use space-time mixing strategies that extend across temporal and spatial dimensions.
We validate the efficacy of our space-time diffusion approach with numerical experiments.
arXiv Detail & Related papers (2024-02-13T23:26:11Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Fast Sampling via Discrete Non-Markov Diffusion Models with Predetermined Transition Time [49.598085130313514]
We propose discrete non-Markov diffusion models (DNDM), which naturally induce the predetermined transition time set.
This enables a training-free sampling algorithm that significantly reduces the number of function evaluations.
We study the transition from finite to infinite step sampling, offering new insights into bridging the gap between discrete and continuous-time processes.
arXiv Detail & Related papers (2023-12-14T18:14:11Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces [0.0]
We develop a theoretical formulation for arbitrary discrete-state Markov processes in the forward diffusion process.
As an example, we introduce Blackout Diffusion'', which learns to produce samples from an empty image instead of from noise.
arXiv Detail & Related papers (2023-05-18T16:24:12Z) - DensePure: Understanding Diffusion Models towards Adversarial Robustness [110.84015494617528]
We analyze the properties of diffusion models and establish the conditions under which they can enhance certified robustness.
We propose a new method DensePure, designed to improve the certified robustness of a pretrained model (i.e. a classifier)
We show that this robust region is a union of multiple convex sets, and is potentially much larger than the robust regions identified in previous works.
arXiv Detail & Related papers (2022-11-01T08:18:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.