Identifying Large-Scale Linear Parameter Varying Systems with Dynamic Mode Decomposition Methods
- URL: http://arxiv.org/abs/2502.02336v1
- Date: Tue, 04 Feb 2025 14:15:16 GMT
- Title: Identifying Large-Scale Linear Parameter Varying Systems with Dynamic Mode Decomposition Methods
- Authors: Jean Panaioti Jordanou, Eduardo Camponogara, Eduardo Gildin,
- Abstract summary: This work develops a methodology for the local and global identification of large-scale LPV systems.
The method is coined as DMD-LPV for being inspired in the Dynamic Mode Decomposition (DMD)
Experiments show that the proposed method can easily identify a reduced-order model of a given large-scale system without the need to perform identification in the full-order dimension.
- Score: 5.217516787417401
- License:
- Abstract: Linear Parameter Varying (LPV) Systems are a well-established class of nonlinear systems with a rich theory for stability analysis, control, and analytical response finding, among other aspects. Although there are works on data-driven identification of such systems, the literature is quite scarce in terms of works that tackle the identification of LPV models for large-scale systems. Since large-scale systems are ubiquitous in practice, this work develops a methodology for the local and global identification of large-scale LPV systems based on nonintrusive reduced-order modeling. The developed method is coined as DMD-LPV for being inspired in the Dynamic Mode Decomposition (DMD). To validate the proposed identification method, we identify a system described by a discretized linear diffusion equation, with the diffusion gain defined by a polynomial over a parameter. The experiments show that the proposed method can easily identify a reduced-order LPV model of a given large-scale system without the need to perform identification in the full-order dimension, and with almost no performance decay over performing a reduction, given that the model structure is well-established.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - An L-BFGS-B approach for linear and nonlinear system identification under $\ell_1$ and group-Lasso regularization [0.0]
We propose a very efficient numerical method for identifying linear and nonlinear discrete-time state-space models.
A Python implementation of the proposed identification method is available in the package jax-sysid.
arXiv Detail & Related papers (2024-03-06T16:17:34Z) - CEBoosting: Online Sparse Identification of Dynamical Systems with
Regime Switching by Causation Entropy Boosting [1.090458267119282]
Regime switching is ubiquitous in many complex dynamical systems with multiscale features, chaotic behavior, and extreme events.
In this paper, a causation entropy boosting (CEBoosting) strategy is developed to facilitate the detection of regime switching.
The strategy can be combined with data assimilation to identify regime switching triggered by the unobserved latent processes.
arXiv Detail & Related papers (2023-04-16T19:14:03Z) - Benchmarking sparse system identification with low-dimensional chaos [1.5849413067450229]
We systematically benchmark sparse regression variants by utilizing the dysts standardized database of chaotic systems.
We demonstrate how this open-source tool can be used to quantitatively compare different methods of system identification.
In all cases, we used ensembling to improve the noise robustness of SINDy and provide statistical comparisons.
arXiv Detail & Related papers (2023-02-04T18:49:52Z) - Robust identification of non-autonomous dynamical systems using
stochastic dynamics models [0.0]
This paper considers the problem of system identification (ID) of linear and nonlinear non-autonomous systems from noisy and sparse data.
We propose and analyze an objective function derived from a Bayesian formulation for learning a hidden Markov model.
We show that our proposed approach has improved smoothness and inherent regularization that make it well-suited for system ID.
arXiv Detail & Related papers (2022-12-20T16:36:23Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Large-Scale System Identification Using a Randomized SVD [4.567810220723372]
We show that an approximate matrix factorization can replace the standard SVD in the realization algorithm.
This is the only method capable of producing a model.
arXiv Detail & Related papers (2021-09-06T19:25:15Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.