Geometric Neural Process Fields
- URL: http://arxiv.org/abs/2502.02338v1
- Date: Tue, 04 Feb 2025 14:17:18 GMT
- Title: Geometric Neural Process Fields
- Authors: Wenzhe Yin, Zehao Xiao, Jiayi Shen, Yunlu Chen, Cees G. M. Snoek, Jan-Jakob Sonke, Efstratios Gavves,
- Abstract summary: Geometric Neural Process Fields (G-NPF) is a probabilistic framework for neural radiance fields that explicitly captures uncertainty.
Building on these bases, we design a hierarchical latent variable model, allowing G-NPF to integrate structural information across multiple spatial levels.
Experiments on novel-view synthesis for 3D scenes, as well as 2D image and 1D signal regression, demonstrate the effectiveness of our method.
- Score: 58.77241763774756
- License:
- Abstract: This paper addresses the challenge of Neural Field (NeF) generalization, where models must efficiently adapt to new signals given only a few observations. To tackle this, we propose Geometric Neural Process Fields (G-NPF), a probabilistic framework for neural radiance fields that explicitly captures uncertainty. We formulate NeF generalization as a probabilistic problem, enabling direct inference of NeF function distributions from limited context observations. To incorporate structural inductive biases, we introduce a set of geometric bases that encode spatial structure and facilitate the inference of NeF function distributions. Building on these bases, we design a hierarchical latent variable model, allowing G-NPF to integrate structural information across multiple spatial levels and effectively parameterize INR functions. This hierarchical approach improves generalization to novel scenes and unseen signals. Experiments on novel-view synthesis for 3D scenes, as well as 2D image and 1D signal regression, demonstrate the effectiveness of our method in capturing uncertainty and leveraging structural information for improved generalization.
Related papers
- Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks [14.224234978509026]
Sheaf Neural Networks (SNNs) naturally extend Graph Neural Networks (GNNs)
We propose two novel sheaf learning approaches that provide a more intuitive understanding of the involved structure maps.
In our evaluation, we show the limitations of the real-world benchmarks used so far on SNNs.
arXiv Detail & Related papers (2024-07-30T07:17:46Z) - Neural Parameter Regression for Explicit Representations of PDE Solution Operators [22.355460388065964]
We introduce Neural Regression (NPR), a novel framework specifically developed for learning solution operators in Partial Differential Equations (PDEs)
NPR employs Physics-Informed Neural Network (PINN, Raissi et al., 2021) techniques to regress Neural Network (NN) parameters.
The framework shows remarkable adaptability to new initial and boundary conditions, allowing for rapid fine-tuning and inference.
arXiv Detail & Related papers (2024-03-19T14:30:56Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
We propose a novel visual localization framework, ie, PNeRFLoc, based on a unified point-based representation.
On the one hand, PNeRFLoc supports the initial pose estimation by matching 2D and 3D feature points.
On the other hand, it also enables pose refinement with novel view synthesis using rendering-based optimization.
arXiv Detail & Related papers (2023-12-17T08:30:00Z) - T1: Scaling Diffusion Probabilistic Fields to High-Resolution on Unified
Visual Modalities [69.16656086708291]
Diffusion Probabilistic Field (DPF) models the distribution of continuous functions defined over metric spaces.
We propose a new model comprising of a view-wise sampling algorithm to focus on local structure learning.
The model can be scaled to generate high-resolution data while unifying multiple modalities.
arXiv Detail & Related papers (2023-05-24T03:32:03Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
We propose Versatile Neural Processes (VNP), which largely increases the capability of approximating functions.
Specifically, we introduce a bottleneck encoder that produces fewer and informative context tokens, relieving the high computational cost.
We demonstrate the effectiveness of the proposed VNP on a variety of tasks involving 1D, 2D and 3D signals.
arXiv Detail & Related papers (2023-01-21T04:08:46Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z) - Scalable Partial Explainability in Neural Networks via Flexible
Activation Functions [13.71739091287644]
High dimensional features and decisions given by deep neural networks (NN) require new algorithms and methods to expose its mechanisms.
Current state-of-the-art NN interpretation methods focus more on the direct relationship between NN outputs and inputs rather than the NN structure and operations itself.
In this paper, we achieve partially explainable learning model by symbolically explaining the role of activation functions (AF) under a scalable topology.
arXiv Detail & Related papers (2020-06-10T20:30:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.